Skip to main content
Log in

Hydrothermal Microwave Synthesis of MnO2 in the Presence of Melamine: The Role of Temperature and pH

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline manganese dioxide have been prepared by hydrothermal microwave treatment of mixed solutions of potassium permanganate and 2,4,6-triamino-1,3,5-triazine (melamine) in pH range 0.5–3. Phase and chemical composition and morphology of the samples was studied by XRD, Raman spectroscopy, and SEM. Conditions (solution pH and temperature) for the formation of single phase MnO2 powders (α-MnO2, γ-MnO2, δ-MnO2, and δ*-MnO2) under hydrothermal microwave treatment were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chen, J. Zhu, X. Wu, et al., ACS Nano 4, 2822 (2010). doi 10.1021/nn901311t

    Article  CAS  PubMed  Google Scholar 

  2. D. Majumdar and S. K. Bhattacharya, J. Appl. Electrochem. 47, 789 (2017). doi 10.1007/s10800-017-1080-3

    Article  CAS  Google Scholar 

  3. I. I. Misnon and R. Jose, New J. Chem. 41, 6574 (2017). doi 10.1039/C7NJ00679A

    Article  CAS  Google Scholar 

  4. F. Cheng, J. Zhao, W. Song, et al., Inorg. Chem. 45, 2038 (2006). doi 10.1021/ic051715b

    Article  CAS  PubMed  Google Scholar 

  5. E. Moazzen, E. V. Timofeeva, and C. U. Segre, J. Mater. Sci. 52, 8107 (2017). doi 10.1007/s10853-017-1018-5

    Article  CAS  Google Scholar 

  6. N. Kumar, A. Sen, K. Rajendran, et al., RSC Adv. 7, 25041 (2017). doi 10.1039/C7RA02013A

    Article  CAS  Google Scholar 

  7. M. Chen, J. Shu, Z. Wang, et al., J. Porous Mater. 24, 973 (2017). doi 10.1007/s10934-016-0336-3

    Article  CAS  Google Scholar 

  8. A. S. Poyraz, J. Huang, S. Cheng, et al., J. Electrochem. Soc. 164, A1983 (2017). doi 10.1149/2.0911709jes

    Google Scholar 

  9. J. Luo, Q. Zhang, A. Huang, et al., Inorg. Chem. 38, 6106 (1999). doi 10.1021/ic980675r

    Article  CAS  PubMed  Google Scholar 

  10. G. V. Novikov, L. N. Kulikova, O. Y. Bogdanova, et al., Russ. J. Inorg. Chem. 54, 180 (2009). doi 10.1134/S003602360902003X

    Article  Google Scholar 

  11. R. N. R. G. Reddy and R. N. R. G. Reddy, J. Power Sources 132, 315 (2004). doi 10.1016/j.jpowsour. 2003.12.054

    Article  CAS  Google Scholar 

  12. P. A. Shinde, V. C. Lokhande, T. Ji, et al., J. Colloid Interface Sci. 498, 202 (2017). doi 10.1016/j.jcis.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  13. L. Shu-Pei, F. Li-Li, Q. Lin, et al., J. Inorg. Mater. 31, 14 (2016). doi 10.15541/jim20150295

    Article  CAS  Google Scholar 

  14. Q. Qu, P. Zhang, B. Wang, et al., J. Phys. Chem. C 113, 14020 (2009). doi 10.1021/jp8113094

    Article  CAS  Google Scholar 

  15. V. Subramanian, H. Zhu, R. Vajtai, et al., J. Phys. Chem. B 109, 20207 (2005). doi 10.1021/jp0543330

    Article  CAS  PubMed  Google Scholar 

  16. J. B. Fei, Y. Cui, X. H. Yan, et al., Adv. Mater. 20, 452 (2008). doi 10.1002/adma.200701231

    Article  Google Scholar 

  17. V. Subramanian, H. Zhu, and B. Wei, J. Power Sources 159, 361 (2006). doi 10.1016/j.jpowsour.2006.04.012

    Article  CAS  Google Scholar 

  18. S. Devaraj and N. Munichandraiah, J. Phys. Chem. 112, 4406 (2008). doi 10.1021/jp7108785

    CAS  Google Scholar 

  19. L. Wang, W. Ma, Y. Li, et al., J. Sol-Gel Sci. Technol. 82, 85 (2017). doi 10.1007/s10971-016-4275-x

    Article  CAS  Google Scholar 

  20. D. K. Walanda, G. A. Lawrance, and S. W. Donne, J. Power Sources 139, 325 (2005). doi 10.1016/j.jpowsour. 2004.06.062

    Article  CAS  Google Scholar 

  21. R. F. Korotkov, A. E. Baranchikov, O. V. Boytsova, et al., Russ. J. Inorg. Chem. 61, 129 (2016). doi 10.1134/S0036023616020091

    Article  CAS  Google Scholar 

  22. K. B. Sharipov, A. D. Yapryntsev, A. E. Baranchikov, et al., Russ. J. Inorg. Chem. 62, 139 (2017). doi 10.1134/S0036023617020164

    Article  CAS  Google Scholar 

  23. M. K. Dey, A. K. Satpati, and A. V. R. Reddy, Am. J. Anal. Chem. 5, 598 (2014). doi 10.4236/ajac.2014. 59067

    Article  CAS  Google Scholar 

  24. J. Guan-Ping, Y. Bo, C. Zhen-Xin, et al., J. Solid State Electrochem. 15, 2653 (2011). doi 10.1007/s10008-010-1249-8

    Article  CAS  Google Scholar 

  25. A. D. Yapryntsev, A. E. Baranchikov, and V. K. Ivanov, J. J. Inorg. Chem. 1, 1 (2016).

    Google Scholar 

  26. E. D. Rus, G. D. Moon, J. Bai, et al., J. Electrochem. Soc. 163, A356 (2016). doi 10.1149/2.1011602jes

    Google Scholar 

  27. Z. Sun, D. Shu, H. Chen, et al., J. Power Sources 216, 425 (2012). doi 10.1016/j.jpowsour.2012.05.087

    Article  CAS  Google Scholar 

  28. X. Yang, Y. Makita, Z. Liu, et al., Chem. Mater. 16, 5581 (2004). doi 10.1021/cm049025d

    Article  CAS  Google Scholar 

  29. E. M. Smolin and L. Rapoport, Chemistry of Heterocyclic Compounds (John Wiley & Sons, Hoboken, 1959).

    Book  Google Scholar 

  30. B. Bann and S. A. Miller, Chem. Rev. 58, 131 (1958). doi 10.1021/cr50019a004

    Article  CAS  Google Scholar 

  31. Y. H. Jang, S. Hwang, S. B. Chang, et al., J. Phys. Chem. A 113, 13036 (2009). doi 10.1021/jp9053583

    Article  CAS  PubMed  Google Scholar 

  32. R. N. De Guzman, Y. F. Shen, B. R. Shaw, et al., Chem. Mater. 5, 1395 (1993). doi 10.1021/cm00034a006

    Article  Google Scholar 

  33. J. H. Albering, in Handbook of Battery Materials, Ed. by J. O. Besenhard (Wiley–VCH, Weinheim, 1999), pp. 87–123.

  34. T. Gao, H. Fjellvag, and P. Norby, Anal. Chim. Acta 648, 235 (2009). doi 10.1016/j.aca.2009.06.059

    Article  CAS  PubMed  Google Scholar 

  35. C. Julien, Solid State Ionics 159, 345 (2003). doi 10.1016/S0167-2738(03)00035-3

    Article  CAS  Google Scholar 

  36. Y. Chabre and J. Pannetier, Prog. Solid State Chem. 23, 1 (1995). doi 10.1016/0079-6786(94)00005-2

    Article  CAS  Google Scholar 

  37. L. I. Hill and A. Verbaere, J. Solid State Chem. 177, 4706 (2004). doi 10.1016/j.jssc.2004.08.037

    Article  CAS  Google Scholar 

  38. C. Julien, M. Massot, S. Rangan, et al., J. Raman Spectrosc. 33, 223 (2002). doi 10.1002/jrs.838

    Article  CAS  Google Scholar 

  39. M. Nakayama and M. Fukuda, Mater. Lett. 62, 3561 (2008). doi 10.1016/j.matlet.2008.03.051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Baranchikov.

Additional information

Original Russian Text © O.S. Ivanova, M.A. Teplonogova, A.D. Yapryntsev, A.E. Baranchikov, V.K. Ivanov, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 6, pp. 678–684.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, O.S., Teplonogova, M.A., Yapryntsev, A.D. et al. Hydrothermal Microwave Synthesis of MnO2 in the Presence of Melamine: The Role of Temperature and pH. Russ. J. Inorg. Chem. 63, 708–713 (2018). https://doi.org/10.1134/S0036023618060128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618060128

Navigation