Skip to main content
Log in

Surface-enhanced Raman scattering (SERS) study on Rhodamine B adsorbed on different substrates

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The SERS signals of Rhodamine B (RhB) adsorbed on Ag, ZnO, and Ag-capped ZnO (ZnO/Ag) substrates were studied. Comparative analysis indicated no significant difference in the positions of the peaks, but the intensities of SERS signals are different. However, abnormal Raman spectrum of RhB (10−4 M) adsorbed on ZnO was observed, which was different from the normal Raman spectrum distinctly. By assignment of the vibrational bands of abnormal Raman spectrum, it is suggested that the nitrogen atom is primarily adsorbed on the ZnO substrate instead of the xanthene ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. J. Bell and N. M. S. Sirimuthu, J. Am. Chem. Soc. 128, 15580 (2006).

    Article  CAS  Google Scholar 

  2. K. Kneipp, H. Knei, I. Itzkan, et al., Chem. Rev. 99, 2957 (1999).

    Article  CAS  Google Scholar 

  3. S. M. Nie and S. R. Emory, Science 275, 1102 (1997).

    Article  CAS  Google Scholar 

  4. M. Sackmann and A. Materny, J. Raman Spectrosc. 37, 305 (2006).

    Article  CAS  Google Scholar 

  5. J. R. Lombardi and L. R. Birke, Acc. Chem. Res. 42, 734 (2009).

    Article  CAS  Google Scholar 

  6. P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).

    Google Scholar 

  7. S. Chan, S. Kwon, T. W. Koo, et al., Adv. Mater. 15, 1595 (2003).

    Article  CAS  Google Scholar 

  8. R. G. Freeman, K. C. Grabar, K. J. Allison, et al., Science 267, 1629 (1995).

    Article  CAS  Google Scholar 

  9. M. K. Gupta, S. Chang, S. Singamaneni, et al., Small 7, 1192 (2011).

    Article  CAS  Google Scholar 

  10. A. Q. Chen, A. E. DePrince, A. Demortiere, et al., Small 7, 2365 (2011).

    Article  CAS  Google Scholar 

  11. Y. Y. Zhu, H. L. Kuang, G. Xu, et al., J. Mater. Chem. 22, 2387 (2012).

    Article  CAS  Google Scholar 

  12. S. W. Xu, J. H. Fang, and Y. X. Huang, J. Nantong Univ. (Natural Sci. Ed.) 10, 73 (2011).

    CAS  Google Scholar 

  13. C. N. Lok, C. M. Ho, R. Chen, et al., J. Biol. Inorg. Chem. 12, 527 (2007).

    Article  CAS  Google Scholar 

  14. O. S. Ivanova and F. P. Zamborini, J. Am. Chem. Soc. 132, 70 (2009).

    Article  Google Scholar 

  15. Y. Yin, Z. Y. Li, Z. Zhong, et al., J. Mater. Chem. 12, 522 (2002).

    Article  CAS  Google Scholar 

  16. A. Henglein, Chem. Mater. 10, 444 (1998).

    Article  CAS  Google Scholar 

  17. A. Henglein, J. Phys. Chem. 97, 5457 (1993).

    Article  CAS  Google Scholar 

  18. Y. Han, R. Lupitskyy, T. M. Chou, et al., Anal. Chem. 83, 5873 (2011).

    Article  CAS  Google Scholar 

  19. C. Pettenkofer, J. Eickmans, U. Erturk, et al., Surf. Sci. 151, 9 (1985).

    Article  CAS  Google Scholar 

  20. S. S. Shariffudin, M. H. Mamat, and M. Rusop, J. Nanosci. Nanotechnol. 12, 8165 (2012).

    Article  CAS  Google Scholar 

  21. Y. J. Lee, B. W. Lim, J. H. Kim, et al., J. Nanosci. Nanotechnol. 12, 5604 (2012).

    Article  CAS  Google Scholar 

  22. J. C. Wang, X. B. Zhang, W. Lei, et al., J. Nanosci. Nanotechnol. 12, 6472 (2012).

    Article  CAS  Google Scholar 

  23. T. Y. Hsieh, J. L. Wang, P. Y. Yang, et al., J. Nanosci. Nanotechnol. 12, 5453 (2012).

    Article  CAS  Google Scholar 

  24. W. Liu, L. M. Wang, C. X. Xu, et al., J. Nanosci. Nanotechnol. 13, 657 (2013).

    Article  CAS  Google Scholar 

  25. L. Guo, J. X. Cheng, X. Y. Li, et al., Mater. Sci. Eng., C 16, 123 (2001).

    Article  Google Scholar 

  26. X. Y. Kang, Y. Han, M. D. Tao, et al., Mater. Res. Bull. 33, 1703 (1998).

    Article  Google Scholar 

  27. H. Zhang, D. Yang, D. Li, et al., Cryst. Growth Des. 5, 547 (2005).

    Article  CAS  Google Scholar 

  28. A. Yoon, W. K. Hong, and T. Lee, J. Nanosci. Nanotechnol. 7, 4101 (2007).

    Article  CAS  Google Scholar 

  29. H. Wen, Mol. Phys. 88, 281 (1996).

    Article  CAS  Google Scholar 

  30. H. Hu, Z. Wang, S. Wang, F. Zhang, et al., J. Alloys Compd. 509, 2016 (2011).

    Article  CAS  Google Scholar 

  31. Z. Wang and J. Rothberg, J. Phys. Chem. B 109, 3387 (2005).

    Article  CAS  Google Scholar 

  32. H. Xu, E. J. Bjerneld, M. Kall, et al., Phys. Rev. Lett. 83, 4357 (1999).

    Article  CAS  Google Scholar 

  33. A. Weiss and G. Haran, J. Phys. Chem. B 105, 12348 (2001).

    Article  CAS  Google Scholar 

  34. L. Spanhel and M. A. Anderson, J. Am. Chem. Soc. 113, 2826 (1991).

    Article  CAS  Google Scholar 

  35. G. Shan, L. Xu, G. Wang, et al., J. Phys. Chem. C 111, 3290 (2007).

    Article  CAS  Google Scholar 

  36. W. Q. Ma and Y. Fang, J. Optoelectron. Laser 10, 1253 (2005).

    Google Scholar 

  37. G. S. S. Saini, S. Kaur, S. K. Tripathi, et al., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 61, 653 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Sun.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C.H., Wang, M.L., Feng, Q. et al. Surface-enhanced Raman scattering (SERS) study on Rhodamine B adsorbed on different substrates. Russ. J. Phys. Chem. 89, 291–296 (2015). https://doi.org/10.1134/S0036024415020338

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415020338

Keywords

Navigation