Skip to main content
Log in

Hydrothermal synthesis of Graphene-TiO2 nanowire with an enhanced photocatalytic activity

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The hydrothermal method was used to synthesize TiO2 nanowire (NW) and then fabricate graphene-TiO2 nanowire nanocomposite (GNW). Graphene oxide (GO) was prepared via improved Hummers’method. GO reduction to graphene and hybridization between NW and graphene by forming chemical bonding. The as-prepared composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM), and ultraviolet visible (UV-Vis) diffuse reflectance spectra. The photocatalytic activity was evaluated by the photodegradation of methylene blue (MB). The prepared GNW nanocomposite has superior photocatalytic activity in the degradation test, showing an impressive photocatalytic enhancement over NW. At the same time, in comparison with Graphene-TiO2 nanoparticle (NP) nanocomposite (GNP), GNW have a better activity which because NW have more uniform dispersion on graphene with less agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Chiu, K. M. Lee, and W. F. Hsieh, J. Power Sources 196, 3683 (2011).

    Article  CAS  Google Scholar 

  2. Y. Zhang, Z. R. Tang, X. Fu, and Y. J. Xu, ACS Nano 4, 7303 (2010).

    Article  CAS  Google Scholar 

  3. S. D. Perera and K. J. Balkus, Jr., Mater. Res. Soc. Symp. Proc. 1211, 115 (2010).

    Google Scholar 

  4. G. Wang, Y. Wang, Y. Ling, et al., Nano Lett. 11, 3026 (2011).

    Article  CAS  Google Scholar 

  5. S. D. Perera, R. G. Mariano, Kh. Vu, Jr., et al., ACS Catal. 4, 949 (2012).

    Article  Google Scholar 

  6. P. F. Fu and P. Y. Zhang, Appl. Catal. B 96, 176 (2010).

    Article  CAS  Google Scholar 

  7. C. M. Wang, Y. Zhang, V. Shutthanandan, S. Thevuthasan, and G. Duscher, J. Appl. Phys. 95, 8185 (2004).

    Article  CAS  Google Scholar 

  8. Z. Y. Zhong, Y. D. Yin, B. Gates, and Y. N. Xia, Adv. Mater. 12, 206 (2000).

    Article  CAS  Google Scholar 

  9. V. Subramanian, E. Wolf, and P. Kamat, J. Phys. Chem. B 105, 11439 (2001).

    Article  CAS  Google Scholar 

  10. O. Akhavan, M. Abdolahad, Y. Abdi, and S. Mohajerzadeh, Carbon 47, 3280 (2009).

    Article  CAS  Google Scholar 

  11. X. Y. Zhang, H. P. Li, X. L. Cui, and Y. Lin, J. Mater. Chem. 20, 2801 (2010).

    Article  CAS  Google Scholar 

  12. N. Zhang, Y. Zhang, and Y. J. Xu, Nanoscale 4, 5792 (2012).

    Article  CAS  Google Scholar 

  13. F. Schedin, A. K. Geim, S. V. Morozov, et al., Nature Mater. 6, 652 (2007).

    Article  CAS  Google Scholar 

  14. T. Takamura, K. Endo, L. Fu, et al., Electrochim. Acta 53, 1055 (2007).

    Article  CAS  Google Scholar 

  15. S. Watcharotone, D. A. Dikin, S. Stankovich, et al., Nano Lett. 7, 1888 (2007).

    Article  CAS  Google Scholar 

  16. N. Zhang, Y. Zhang, X. Pan, M. Q. Yang, and Y. J. Xu, J. Phys. Chem. C 116, 18023 (2012).

    Article  CAS  Google Scholar 

  17. Y. Liang, H. Wang, H. Casalongue, et al., Nano Res. 3, 701 (2010).

    Article  CAS  Google Scholar 

  18. X. Lin, F. Rong, X. Ji, and D. J. Fu, Sol-Gel Sci. Technol. 59, 283 (2011).

    Article  CAS  Google Scholar 

  19. G. Williams, B. Seger, and P. Kamt, ACS Nano 2, 1487 (2008).

    Article  CAS  Google Scholar 

  20. X. Y. Zhang, H. P. Li, X. L. Cui, and Y. Lin, J. Mater. Chem. 20, 2801 (2010).

    Article  CAS  Google Scholar 

  21. W. Fan, Q. Lai, Q. Zhang, and Y. Wang, J. Phys. Chem. C 115, 10694 (2011).

    Article  CAS  Google Scholar 

  22. X. Zhang, Y. Sun, X. Cui, and Z. Jiang, Int. J. Hydrogen Energy 37, 811 (2012).

    Article  CAS  Google Scholar 

  23. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  24. Y. X. Xu, H. Bai, G. W. Li, and G. Q. Shi, J. Am. Chem. Soc. 130, 5856 (2008).

    Article  CAS  Google Scholar 

  25. M. Choucair, P. Thordarson, and J. A. Stride, Nature Nanotechnol. 4, 30 (2009).

    Article  CAS  Google Scholar 

  26. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, ACS Nano 4, 380 (2010).

    Article  CAS  Google Scholar 

  27. Y. J. Xu, Y. B. Zhuang, and X. Z. Fu, J. Phys. Chem. C 114, 2669 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Fan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Fan, J., Yang, Y. et al. Hydrothermal synthesis of Graphene-TiO2 nanowire with an enhanced photocatalytic activity. Russ. J. Phys. Chem. 89, 1189–1194 (2015). https://doi.org/10.1134/S0036024415070134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415070134

Keyword

Navigation