Skip to main content
Log in

Formation of titanosilicate precursors of an active adsorption phase

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Micro-mesoporous titanosilicate precursors of the active absorption phase of a composite ceramic membrane are synthesized, and their textural and adsorption properties are investigated by means of low-temperature nitrogen adsorption/desorption. Low-temperature isotherms of nitrogen adsorption/desorption are analyzed using the BET, Langmuir, comparative t-plot, Barrett–Joyner–Halenda, and density functional theory methods. It is found that at high contents of silicon(IV) oxide, the resulting xerogels have surface areas of 656 and 890 m2/g according to the BET and Langmuir approaches, respectively, while the micropores’ inner and outer surfaces are 453 and 466 m2/g, respectively, according to the t-plot. According to the DFT distributions, the mesopore diameters of a sample can be adjusted in the range of 3–9 nm. By analyzing the type of capillary condensation hysteresis in the adsorption/desorption isotherms, it is shown that the pores in the samples are very bottle-like, even though their shape may be different in reality. It is found that in samples with high contents of titanium(IV) oxide, the pore throats are blocked during adsorbate desorption, due to the percolation effect. It is assumed that the stabilization of particles of titanium(IV) oxide by amorphous layers of silica protects the texture of titanosilicate xerogels from full contraction and the coalescence of particles during heat treatment ranging from 393 to 923 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fundamentals of Inorganic Membrane Science and Technology, Ed. by A. I. Burggraaf and L. Cot (Elsevier, Amsterdam, 1996).

  2. K. Kaiser and H. Schmidt, J. Non-Cryst. Solids 63, 261 (1984).

    Article  CAS  Google Scholar 

  3. A. Larbot, A. Julbe, C. Guizard, et al., J. Membr. Sci. 44, 289 (1989).

    Article  CAS  Google Scholar 

  4. J. A. Alary, L. Cot, F. Gugliermotte, et al., Eur. Patent No. 84401762.4 (1984).

  5. V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, S. S. Ivanchev, and A. B. Yaroslavtsev, Nanotechnol. Russ. 3, 656 (2008).

    Article  Google Scholar 

  6. G. V. Myasoedova and V. A. Nikashina, Ross. Khim. Zh. 50 (5), 55 (2006).

    CAS  Google Scholar 

  7. P. T. Tanev, M. Chibwe, and T. J. Pinnavaia, Lett. Nature 368, 321 (1994).

    Article  CAS  Google Scholar 

  8. E. M. Flanigan, J. M. Bennett, R. W. Grose, et al., Nature 271, 512 (1978).

    Article  Google Scholar 

  9. K. Sinko, Materials 3, 704 (2010).

    Article  CAS  Google Scholar 

  10. S. Yoda, Y. Tasaka, K. Uchida, et al., J. Non-Cryst. Solids 285, 8 (2001).

    Article  CAS  Google Scholar 

  11. N. Yao, S. Cao, K. L. Yeung, et al., Microporous Mesoporous Mater. 117, 570 (2009).

    Article  CAS  Google Scholar 

  12. S. Cao, N. Yao, and K. L. Yeung, J. Sol-Gel. Sci. Technol. 46, 323 (2008).

    Article  CAS  Google Scholar 

  13. A. I. Ivanets, T. F. Kuznetsova, V. G. Prozorovich, and S. I. Eremenko, Russ. J. Appl. Chem. 86, 893 (2013).

    Article  CAS  Google Scholar 

  14. T. F. Kuznetsova and S. I. Eremenko, Colloid. J. 77, 451 (2015).

    Article  CAS  Google Scholar 

  15. V. S. Smitha, K. A. Manjumol, K. V. Baiju, et al., J. Sol-Gel Sci. Technol. 54, 203 (2010).

    Article  CAS  Google Scholar 

  16. G. A. Zenkovets, V. Yu. Gavrilov, A. A. Shutilov, and S. V. Tsybulya, Kinet. Catal. 50, 760 (2009).

    Article  CAS  Google Scholar 

  17. R. H. Lopez, A. M. Vidales, A. Dominguez Ortiz, et al., Colloid Surf. A 300, 122 (2007).

    Article  CAS  Google Scholar 

  18. S. Gregg and K. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1982).

    Google Scholar 

  19. R. M. A. Roque-Malherbe, Adsorption and Diffusion in Nanoporous Materials (CRC, Boca Raton, FL, 2007).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Kuznetsova.

Additional information

Original Russian Text © T.F. Kuznetsova, A.I. Ivanets, L.L. Katsoshvili, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 4, pp. 696–701.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, T.F., Ivanets, A.I. & Katsoshvili, L.L. Formation of titanosilicate precursors of an active adsorption phase. Russ. J. Phys. Chem. 91, 744–748 (2017). https://doi.org/10.1134/S0036024417040136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417040136

Keywords

Navigation