Skip to main content
Log in

Effect of silicon on the wear resistance of high-carbon steels with the structures of isothermal decomposition of austenite during friction and abrasive action

  • Physical Foundations of Strength and Plasticity
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The hardness and wear resistance during sliding and abrasive friction of 80S2 (0.83% C, 1.66% Si) and U8 (0.83% C) steels subjected to the isothermal γ → α decomposition in the temperature range 330–650°C and additional 5-min annealing at 650°C are compared. The optimum decomposition temperature is found to be 550°C. At this temperature, fine lamellar pearlite with the maximum hardness and wear resistance as compared to other pearlitic and bainitic structures forms in the silicon steel. The silicon-alloyed fine lamellar pearlite of 80S2 steel is found to have high hardness and abrasive wear resistance as compared to the similar structure in plain U8 steel; however, this pearlite has no advantages in the wear resistance under conditions of sliding friction on a steel plate. Silicon alloying of the bainitic structures in the eutectoid steel leads to a noticeable decrease in the wear resistance during sliding friction and abrasive action. Friction oxidation is shown to negatively affect the abrasive wear resistance of the silicon steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Schastlivtsev, T. N. Tabatchikova, A. V. Makarov, L. Yu. Egorova, and I. L. Yakovleva, “Effect of Ferrite Solid-Solution Strengthening and Cementite Spheroidizing on the Wear Resistance of a Eutectoid Carbon Steel with a Fine-Lamellar Pearlitic Structure,” Fiz. Met. Metalloved. 88(1), 94–103 (1999) [Phys. Met. Metallogr. 88 (7), 87–95 (1999)].

    CAS  Google Scholar 

  2. A. V. Makarov, V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, Yu. V. Khlebnikova, and L. Yu. Egorova, “Wear Resistance of Hypereutectoid Carbon Steels with Structures of Isothermally Transformed Austenite,” Fiz. Met. Metalloved. 97(5), 94–105 (2004) [Phys. Met. Metallogr. 97 (5), 519–530 (2004)].

    CAS  Google Scholar 

  3. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Pearlite in Carbon Steels (UrO RAN, Yekaterinburg, 2006) [in Russian].

    Google Scholar 

  4. T. I. Tabatchikova, S. B. Mikhailov, V. M. Schastlivtsev, S. V. Grachev, and A. Yu. Rykovskaya, “Internal Friction in Patented U8 Steel after Reannealing,” Fiz. Met. Metalloved. 84(4), 85–97 (1997) [Phys. Met. Metallogr. 84 (4), 515–527 (1997)].

    CAS  Google Scholar 

  5. E. Houdremont, Handbuch der Sonderstahlkunde (Springer, Berlin, 1956; Metallurgizdat, Moscow, 1959).

    Google Scholar 

  6. J. H. Dumbleton and J. A. Douthett, “The Unlubricated Aghesive Wear Resistance of Metastable Austenitic Stainless Steels Containing Silicon,” Wear 42(2), 305–332 (1977).

    Article  CAS  Google Scholar 

  7. A. V. Makarov, L. G. Korshunov, and I. L. Solodova, “Wear Resistance and Deformation Strengthening of Carbon and Low-Alloy Tool Steels under Conditions of Sliding Friction with Large Contact Loads,” Trenie Iznos 21(5), 501–510 (2000).

    CAS  Google Scholar 

  8. G. A. Fontalvo and C. Mitterer, “The Effect of Oxideforming Alloying Elements on the High Temperature Wear of a Hot Work Steel,” Wear 258(10), 1491–1499 (2005).

    Article  CAS  Google Scholar 

  9. D. Bakly, Surface Phenomena in Adhesion and Friction Action (Mashinostroenie, Moscow, 1986) [in Russian].

    Google Scholar 

  10. A. F. Sinyavskii and T. A. Mikhailichenko, “Structural Changes on the Friction Surface,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 5, 37–39 (1992).

  11. W. J. Schumacher, “Stainless Steel Alternative to Cobalt Wear Alloys,” Chemical Eng. 88(19), 149–152 (1981).

    CAS  Google Scholar 

  12. L. G. Korshunov, Yu. N. Goikhenberg, and N. L. Chernenko, “Effect of Silicon on the Structure, Tribological Behavior, and Mechanical Properties of Nitrogen-Containing Chromium-Manganese Austenitic Steels,” Fiz. Met. Metalloved. 96(5), 100–110 (2003) [Phys. Met. Metallogr. 96 (11), 1550–1560 (2003)].

    CAS  Google Scholar 

  13. A. V. Makarov, L. G. Korshunov, L. Kh. Kogan, et al., “Abrasive Wear Resistance of Carbon and Low-Alloy Tool Steels and Its Estimation by Nondestructive Methods,” Trenie Iznos 19(5), 633–641 (1998).

    CAS  Google Scholar 

  14. F. B. Pickering, Physical Metallurgy and Design of Steels (Applied Science, London, 1978; Metallurgiya, Moscow, 1982).

    Google Scholar 

  15. N. S. Stoloff, “Effect of Alloying on the Fracture Characteristics,” in Fracture. Vol. 6. Fracture of Metals (Metallurgiya, Moscow, 1976), pp. 11–89.

    Google Scholar 

  16. J. Natting, “The Physical Metallurgy of Alloy Steel,” J. The Iron and Steel Institute 207(6), 872–893 (1969).

    Google Scholar 

  17. V. I. Sarrak, V. S. Shcherbakova, and N. L. Sigalova, “Sensitivity of Steel Alloyed with Carbide-forming Elements on Brittle Fracture,” Metalloved. Term. Obrab. Met., No. 7, 9–13 (1971).

  18. D. N. Aleshin, A. M. Glezer, and V. E. Gromov, “Nature of the Low Ductility of Iron-Silicon Alloys with a High Silicon Content,” Deformatsiya is Razrushenie Materialov, No. 8, 8–13 (2005).

  19. A. V. Makarov, R. A. Savrai, V. M. Schastlivtsev, et al., “Mechanical Properties and Fracture upon Static Tension of the High-Carbon Steel with Different Types of Pearlite Structure,” Fiz. Met. Metalloved. 104(5), 542–555 (2007) [Phys. Met. Metallogr. 104 (5), 522–534 (2007)].

    CAS  Google Scholar 

  20. V. N. Gridnev, V. G. Gavrilyuk, V. V. Nemoshkalenko, et al., “Effect of Alloying Elements on the Decomposition of Cementite during Plastic Deformation of Steel,” Dokl. Akad. Nauk SSSR 236(4), 857–860 (1977).

    CAS  Google Scholar 

  21. R. P. Todorov and M. V. Nikolov, Structure and Properties of Graphitized Steel Ingots (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  22. M. V. Belous, V. T. Cherepin, and M. A. Vasil’ev, Transformations during Tempering of Steel (Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  23. J. Gordine and I. Codd, “The Influence of Silicon up to 1.5 % wt on the Tempering Characteristics of a Spring Steel,” Iron and Steel Inst. 207(4), 461–467 (1969).

    CAS  Google Scholar 

  24. A. V. Makarov, L. G. Korshunov, and I. L. Solodova, “Effect of Frictional Oxidation on the Fracture of the Friction Surfaces of Carbon Steels,” Vestnik Tambovskogo Universiteta. Estestvennye I Tekhnicheskie Nauki 5(2–3), 326–328 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Makarov.

Additional information

Original Russian Text © A.V. Makarov, V.M. Schastlivtsev, T.I. Tabatchikova, A.L. Osintseva, I.L. Yakovleva, L.Yu. Egorova, 2010, published in Deformatsiya i Razrushenie Materialov, 2010, No. 6, pp. 1–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, A.V., Schastlivtsev, V.M., Tabatchikova, T.I. et al. Effect of silicon on the wear resistance of high-carbon steels with the structures of isothermal decomposition of austenite during friction and abrasive action. Russ. Metall. 2011, 296–302 (2011). https://doi.org/10.1134/S0036029511040100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029511040100

Keywords

Navigation