Skip to main content
Log in

The accuracy of various training algorithms in tribological behavior modeling of A356-B4C composites

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

In the present study, various artificial neural network (ANN) training algorithms were implemented for finite element technique (FEM) modeling of the composites wear behavior. The experimental results show that the weight losses of the composites are less than that of unreinforced alloy. It is believed that incorporation of hard particles to aluminum alloy contributes to the improvement of the wear resistance of the base alloy to a great extent. Hard particles take part in resisting penetration, cutting and grinding by the abrasive and protect the surface. It is noted that the increase in the weight fraction of B4C particles improves the wear resistance of the composite. The wear resistance increases with increasing the size of reinforcing particles. The FEM method is used for discretization and to calculate the transient temperature field of quenching. During the ANN training process, the weights and biases in the network are adjusted to minimize the error and to obtain a high-performance in the solution. The test set was used to check the system accuracy of each training algorithm at the end of learning. It was observed that Bayesian regularization learning algorithm gave the best prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Samuel, A. Gotmare, and F. H. Samuel, Compos. Sci. Technol. 53, 301 (1995).

    Article  CAS  Google Scholar 

  2. S. Chung and B. H. Hwang, Tribol. Int. 27(5), 307 (1994).

    Article  CAS  Google Scholar 

  3. F. M. Hosking, F. Folgar Portillo, R. Wunderlin, and R. Mehrabian, J. Mater. Sci. 17, 477 (1982).

    Article  CAS  Google Scholar 

  4. S. C. Lim, M. Gupta, L. Ren, and J. K. M. Kwok, J. Mater. Process. Technol. 89/90, 591 (1999).

    Article  Google Scholar 

  5. P. N. Bindumadhavan, T. K. Chia, M. Chandrasekaran, H. K. Wan, L. N. Lam, and O. Prabhakar, Mater. Sci. Eng., Ser. A 315, 217 (2001).

    Article  Google Scholar 

  6. M. Roy, B. Venkataraman, V. V. Bhanuprasad, Y. R. Mahajan, and G. Sundararajan, Metall. Trans., Ser. A 23, 2833 (1992).

    Article  Google Scholar 

  7. S. Skolianos and T. Z. Kattamis, Mater. Sci. Eng., Ser. A 163, 107 (1993).

    Article  Google Scholar 

  8. M. K. Surappa, S. V. Prasad, and P. K. Rohatgi, Wear 77, 295 (1982).

    Article  CAS  Google Scholar 

  9. P. N. Bindumadhavan, H. K. Wah, and O. Prabhakar, Wear 248, 112 (2001).

    Article  CAS  Google Scholar 

  10. J. K. M. Kwok and S. C. Lim, Compos. Sci. Technol. 59, 55 (1999).

    Article  CAS  Google Scholar 

  11. S. Das, D. P. Mondal, and G. Dixit, Metall. Mater. Trans., Ser. A 32, 633 (2001).

    Article  Google Scholar 

  12. A. M. Hassan, A. Alrashdan, M. T. Hayajneh, and A. T. Mayyas, J. Mater. Proc. Technol. 209, 894 (2009).

    Article  CAS  Google Scholar 

  13. F. Karimzadeh, A. Ebnonnasir, and A. Foroughi, Mater. Sci. Eng., Ser. A 432, 184 (2006).

    Article  Google Scholar 

  14. Necat Altinkok and Rasit Koker, Mater. Design 25, 595 (2004).

    Article  CAS  Google Scholar 

  15. Swadesh Kumar Singh, K. Mahesh, and Amit Kumar Gupta, Mater. Design 31, 2288 (2010).

    Article  CAS  Google Scholar 

  16. Paulo J. Lisboa and Azzam F. G. Taktak, A Systematic Review, Neural Networks 19, 408 (2006).

    Article  Google Scholar 

  17. M. Ostad Shabani and A. Mazahery, Int. J. Appl. Math. Mech. 7, 89 (2011).

    Google Scholar 

  18. M. O. Shabani, A. Mazahery, A. Bahmani, P. Davami, and N. Varahram, Kovove Mater. 49, 253 (2011).

    Google Scholar 

  19. S. H. Mousavi Anijdan, A. Bahrami, H. R. Madaah Hosseini, and A. Shafyei, Mater. Design 27, 605 (2006).

    Article  CAS  Google Scholar 

  20. Rey-Chue Hwang, Yu-Ju Chen, and Huang-Chu Huang, Expert Systems Appl. 37, 3136 (2010).

    Article  Google Scholar 

  21. Livan Fratini, Gianluca Buffa, and Dina Palmeri, Comput. Struct. 87, 1166 (2009).

    Article  Google Scholar 

  22. R. Hamzaoui, M. Cherigui, S. Guessasm, O. ElKedim, and N. Fenineche, Mater. Sci. Eng., Ser. B 163, 17 (2009).

    Article  CAS  Google Scholar 

  23. N. S. Reddy, A. K. Prasada Rao, M. Chakraborty, and B. S. Murty, Mater. Sci. Eng., Ser. A 391, 131 (2005).

    Article  Google Scholar 

  24. S. Nagarajan and B. Dutta, Compos. Sci. Technol. 59, 897 (1999).

    Article  CAS  Google Scholar 

  25. J. C. Viala, J. Bouix, G. Gonzalez, and C. Esnouf, J. Mater. Sci. 32, 4559 (1997).

    Article  CAS  Google Scholar 

  26. W. Zhou and Z. M. Xu, J. Mater. Proc. Technol. 63, 358 (1997).

    Article  Google Scholar 

  27. D. J. Lloyd and B. Chamberian, ASM, Illinois, 1988, pp. 263–269.

  28. S. Ray, Proceedings of the Survey on Fabrication Methods of Cast Reinforced Metal Composites, ASM/TMS, 1988, pp. 77–80.

  29. F. Rana and D. M. Stefanescu, Metall. Mater. Trans., Ser. A 20, 1564 (1989).

    Article  Google Scholar 

  30. K. C. Ludema, Wear 100, 315 (1984).

    Article  CAS  Google Scholar 

  31. S. C. Lim and M. F. Ashby, Acta Meta. 35, 1 (1987).

    Article  CAS  Google Scholar 

  32. K. Razavizadeh and T. S. Tyre, Wear 79, 325 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mazahery.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazahery, A., Shabani, M.O. The accuracy of various training algorithms in tribological behavior modeling of A356-B4C composites. Russ. Metall. 2011, 699–707 (2011). https://doi.org/10.1134/S0036029511070196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029511070196

Keywords

Navigation