Skip to main content
Log in

Climatic aging of composite aviation materials: II. Relaxation of the initial structural nonequilibrium and through-thickness gradient of properties

  • Promising Materials and Technologies
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The climatic aging of composite aviation materials is analyzed. It is shown that changes in their mechanical properties are affected by the initial structural nonequilibrium of the binder and reinforcing fibers. A characteristic feature is the formation of a through-thickness gradient of sample properties at their exposure to natural climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aviation Materials. Corrosion and Aging of Materials in Sea Subtropics, Ed. by B. V. Perov and V. A. Zasypkin (VIAM, Moscow, 1983) [in Russian].

    Google Scholar 

  2. Questions of Aviation Science and Engineering. Ser. Aviation Materials. Climatic Aging of PCMs, Ed. by B. V. Perov and O. V. Startsev (VIAM, Moscow, 1990) [in Russian].

    Google Scholar 

  3. O. V. Startsev, “Aging of Polymer Aviation Materials in a Hot Humid Climate,” Doctoral Dissertation in Technical Science Engineering (VIAM, Moscow, 1990).

    Google Scholar 

  4. O. V. Startsev, V. P. Meletov, B. V. Perov, and G. P. Mashinskaya, “Investigation of the Aging Mechanism of Organotextolite in a Subtropical Climate,” Mekhan. Komp. Mater. (Riga), No. 3, 462–467 (1986).

  5. L. T. Startseva, “Climatic Aging of Organoplastics,” Mekhan. Komp. Mater. (Riga), No. 6, 840–848 (1993).

  6. O. Startsev, A. Krotov, and G. Mashinskaya, “Climatic Aging of Organic Fiber-Reinforced Plastics: Water Effect,” J. Polym. Mater. 37, 161–171 (1997).

    Article  CAS  Google Scholar 

  7. O. V. Startsev, “Peculiarities of Aging of Aircraft Materials in a Warm Damp Climate” in Polymer Yearbook, Ed. by R. A. Pethrick (Harwood Academic Publishers, Glasgow, 1993), Vol. 11, pp. 91–109.

    Google Scholar 

  8. E. N. Kablov, V. N. Kirillov, V. P. Zhilikov, and A. D. Zhirnov, “Studies of Climatic Resistance of Aviation Materials” in Ways of Scientific Potential Association in the Interest of Solution of Timely Fundamental and Applied Problems of Strategic Development of the RF Subjects, (Materials of Field Meeting of the Presidium of Siberian Branch of the Russian Academy of Sciences, Yakutsk, 2003), pp. 191–196.

  9. E. N. Kablov, I. S. Deev, V. A. Efimov, et al., “Influence of Atmospheric Factors and Mechanical Stresses on the Microstructural Features of Destruction of Polymer Composite Materials” in Proceedings of 7th Scientific Conference “Gidrosalon-2008,” Moscow, 2008, part 1, pp. 279–286.

  10. V. N. Kirillov, V. A. Efimov, and Yu. M. Vapirov, “Investigation of the Climatic Resistance of Polymer Composite Materials” in Proceedings of 7th Scientific Conference “Gidrosalon-2008,” Moscow, 2008, part 1, pp. 314–320.

  11. Yu. M. Vapirov, V. N. Kirillov, and V. A. Efimov, “Features of the External Factor Effect on PCM Properties under Accelerated and Natural Climatic Tests” in Proceedings of 7th Scientific Conference “Gidrosalon-2008” (Moscow, 2008), part 1, pp. 327–335.

  12. E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic Aging of Aviation Polymer Composite Materials. 1. Aging Mechanisms,” Russian Metallurgy (Metally), No. 10, 993–1000 (2010).

  13. O. V. Startsev, A. A. Kuznetsov, A. S. Krotov, et al., “Modeling of Moisture Transfer in Laminated Plastics and Fiberglass Plastics,” Fiz. Mezomekhan. 5(2), 109–114 (2002).

    CAS  Google Scholar 

  14. O. V. Startsev, D. V. Filistovich, A. A. Kuznetsov, et al., “Deformability of Sheet Fiberglass Plastics on the Basis of Adhesive Prepregs under Shear Loadings in Humid Medium,” Perspekt. Mater., No. 1, 20–26 (2004).

  15. A. A. Kuznetsov, “State Diagnostics of Metallopolymer Composite Materials in a Humid Medium,” Candidate’s Dissertation in Mathematics and Physics (Barnaul, 2003).

  16. A. S. Krotov, “Diagnostics of the Processes of Moisture Sorption and Diffusion in Polymer Composite Materials,” Candidate’s Dissertation in Mathematics and Physics (Barnaul, 2002).

  17. O. V. Startsev, K. O. Prokopenko, A. A. Litvinov, et al., “Investigation of Hygrothermal Aging of an Aviation Fiberglass Plastic,” Klei, Germet., Tekhnol., No. 8, 18–22 (2009).

  18. A. S. Komarov, I. A. Loiko, O. V. Startsev, et al., “Investigation of the Moisture Resistance of an Aviation Fiberglass Plastic by the Method of Dynamic Mechanical Analysis,” Vestn. Tomskogo Gos. Universiteta, Probl. Teplofiz. i Materialov., Bull. Operat. Nauchn. Inf., No. 24, 75–79 (2004).

  19. D. V. Filistovich, O. V. Startsev, A. A. Kuznetsov, et al., “Moisture Effect on the Anisotropy of the Dynamic Shear Modulus of Fiberglass Plastics,” Doklady Akademii Nauk 390(5), 489–492 (2003).

    Google Scholar 

  20. O. V. Startsev, L. I. Anikhovskaya, A. A. Litvinov, and A. S. Krotov, “Increase in the Prediction Accuracy of Polymer Composite Material Properties under Hygrothermal Aging,” Doklady Akademii Nauk 428(1), 56–60 (2009).

    Google Scholar 

  21. O. V. Startsev, “Structural Heterogeneity and Physical Properties of Climatic Aged Polymeric Composite Materials” in Proceedings of the Conference “EUROMECH 350: Image Analysis, Porous Materials, and Physical Properties,” Carcans, France, 1996.

  22. O. V. Startsev, and B. V. Perov, “Effect of Structure Inhomogeneity in Polymeric Composites on Their Climatic Aging” in Proceedings of the 3rd Japan-Soviet Union Joint Symposium “Advanced Composite Materials,” Moscow, 1991, p. 17.

  23. O. V. Startsev, Yu. M. Vapirov, I. S. Deev, et al., “Effect of Long-Term Atmospheric Aging on the Properties and Structure of a Carbon-Fiber Plastic,” Mekhan. Komp. Mater. (Riga), No. 4, 637–642 (1986).

  24. Yu. M. Vapirov, V. V. Krivonos, and O. V. Startsev, “Interpretation of Anomalous Changes in the Properties of Carbon-Fiber Plastic KMU-1u upon Aging in Different Climatic Zones,” Mekhan. Komp. Mater. (Riga), No. 2, 266–273 (1994).

  25. O. V. Startsev, A. S. Krotov, and P. D. Golub, “Effect of Climatic and Radiation Aging on the Properties of Glass Fibre-Reinforced Epoxy Laminates,” Polym. and Polym. Comp. 6(7), 481–488 (1998).

    CAS  Google Scholar 

  26. O. V. Startsev, D. A. Khristoforov, A. B. Klyushnichenko, et al., “Relaxation of Temperature Deformations of Carbon Fibers,” Doklady Akademii Nauk 390(4), 475–477 (2003).

    Google Scholar 

  27. O. V. Startsev, A. A. Litvinov, E. S. Chashkov, and A. S. Krotov, “Thermal Expansion of Basaltoplastics and Their Components,” in Proceedings of VIII All-Russian Scientific Practical Conference “Engineering and Technology of Production of Heat-Insulating Materials from Minerals,” Biisk, 2008, pp. 153–156.

  28. O. V. Startsev, A. S. Krotov, and L. T. Startseva “Interlayer Shear Strength of Polymer Composite Materials during Long-Term Climatic Aging,” Polym. Degrad. Stab. 63, 183–186 (1999).

    Article  CAS  Google Scholar 

  29. O. V. Startsev, Yu. M. Vapirov, I. I. Perepechko, and L. P. Kobets, “Influence of the Carbon Filler Concentration on the Molecular Mobility and Relaxation Processes of an Epoxy Polymer,” Vysokomol. Soedin., Ser. A 28(9), 1842–1847 (1986).

    CAS  Google Scholar 

  30. V. V. Issoupov, O. V. Startsev, A. S. Krotov, and V. Viel-Inguimbert, “Fine Effects in Epoxy Matrices of Polymer Composite Materials after Exposure to a Space Environment,” J. Polym. Comp. 6(2), 123–131 (2002).

    Google Scholar 

  31. J. P. Komorovski and S. Beland, “Moisture Diffusion in Graphite / Bismaleimide-Modified-Epoxy Composite IMB/5245C,” Can. Aeronaut. Space J. 32(3), 218–226 (1986).

    Google Scholar 

  32. C. E. Browning, “The Mechanisms of Elevated Temperature Property Losses in High Performance Structural Epoxy Resin Matrix Materials after Exposure to High Humidity Environments,” Polym. Eng. Sci. 18(1), 16–24 (1978).

    Article  CAS  Google Scholar 

  33. Water Transport in Synthetic Polymers, Ed. by A. L. Iordansky, O. V. Startsev, and G. E. Zaikov (Nova Sci. Publ. Inc., New York, 2003).

    Google Scholar 

  34. M. Cotinaud, P. Bonniau, and A. R. Bunsell, “Effect of Water Absorption on the Electrical Properties of Glass-Fibre Reinforced Epoxy Composites,” J. Mater. Sci. 17(3), 867–877 (1982).

    Article  CAS  Google Scholar 

  35. A. N. Aniskevich and N. E. Khramenkov, “Investigation of the Moisture Effect on the Properties of an Organoplastic by Thermoanalytical Methods,” Mekhan. Komp. Mater. (Riga), No. 5, 911–916 (1989).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Startsev.

Additional information

Original Russian Text © E.N. Kablov, O.V. Startsev, A.S. Krotov, V.N. Kirillov, 2010, published in Deformatsiya i Razrushenie Materialov, 2010, No. 12, pp. 40–45.

For part 1, see this issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kablov, E.N., Startsev, O.V., Krotov, A.S. et al. Climatic aging of composite aviation materials: II. Relaxation of the initial structural nonequilibrium and through-thickness gradient of properties. Russ. Metall. 2011, 1001–1007 (2011). https://doi.org/10.1134/S0036029511100077

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029511100077

Keywords

Navigation