Skip to main content
Log in

Symmetries and invariant solutions of the one-dimensional Boltzmann equation for inelastic collisions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the one-dimensional integro-differential Boltzmann equation for Maxwell particles with inelastic collisions. We show that the equation has a five-dimensional algebra of point symmetries for all dissipation parameter values and obtain an optimal system of one-dimensional subalgebras and classes of invariant solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. V. Ovsiannikov, Group Analysis of Differential Equations, Acad. Press, New York (1982).

    MATH  Google Scholar 

  2. P. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1993).

    Book  MATH  Google Scholar 

  3. V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations (Series Sov. East Eur. Math., Vol. 9), World Scientific, Singapore (1992).

    Book  MATH  Google Scholar 

  4. N. Kh. Ibragimov, Groups of Transformations in Mathematical Physics [in Russian], Nauka, Moscow (1983); English transl.: Transformation Groups Applied to Mathematical Physics (Math. Its Appl. Sov. Ser., Vol. 3), Reidel, Dordrecht (1985).

    Google Scholar 

  5. Y. N. Grigoryev, N. H. Ibragimov, V. F. Kovalev, and S. V. Meleshko, Symmetries of Integro-Differential Equations, Springer, Dordrecht (2010).

    Book  Google Scholar 

  6. Yu. N. Grigor’ev and S. V. Meleshko, Sov. Phys. Dokl., 32, 874–876 (1987).

    ADS  Google Scholar 

  7. A. V. Bobylev, Math. Models Meth. Appl. Sci., 3, 443–476 (1993).

    Article  MathSciNet  Google Scholar 

  8. A. V. Bobylev and V. Dorodnitsyn, Discrete Contin. Dyn. Syst., 24, 35–57 (2009).

    Article  MathSciNet  Google Scholar 

  9. Yu. N. Grigoryev, S. V. Meleshko, and P. Sattayatham, J. Phys. A: Math. Gen., 32, L337–L342 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  10. A. V. Bobylev, Sov. Phys. Dokl., 20, 822–824 (1975).

    ADS  Google Scholar 

  11. M. Krook and T. T. Wu, Phys. Rev. Lett., 36, 1107–1109 (1976).

    Article  ADS  Google Scholar 

  12. A. V. Bobylev and N. Kh. Ibragimov, Math. Models and Computer Simulations, 1, 100–109 (1989).

    MathSciNet  Google Scholar 

  13. A. V. Bobylev, G. L. Caraffini, and G. Spiga, J. Math. Phys., 37, 2787–2795 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  14. Yu. N. Grigor’ev and S. V. Meleshko, Siberian Math. J., 38, 434–448 (1997).

    Article  MathSciNet  Google Scholar 

  15. E. Ben-Naim and P. L. Krapivsky, “The inelastic Maxwell model,” in: Granular Gas Dynamics (Lect. Notes Phys., Vol. 624), Springer, Berlin (2003), pp. 65–94.

    Chapter  Google Scholar 

  16. E. Ben-Naim and P. L. Krapivsky, Phys. Rev. E, 61, R5–R8 (2000); arXiv:cond-mat/9909176v1 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Ilyin.

Additional information

This research was funded by a grant from the Russian Science Foundation (Project No. 14-11-00870).

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 186, No. 2, pp. 221–229, February, 2016. Original article submitted March 2, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyin, O.V. Symmetries and invariant solutions of the one-dimensional Boltzmann equation for inelastic collisions. Theor Math Phys 186, 183–191 (2016). https://doi.org/10.1134/S0040577916020045

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916020045

Keywords

Navigation