Skip to main content
Log in

Higher order heat and mass transfer equations and their justification in extended irreversible thermodynamics

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Three models leading to higher order heat conduction and diffusion equations are considered. A thermodynamic substantiation is suggested for constitutive equations in the framework of extended irreversible thermodynamics. Expressions for generalized temperature and generalized chemical potentials are presented, which are determined by the form of the constitutive laws describing the heat conduction and diffusion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cattaneo, C., Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 1948–1949, vol. 3, p. 83.

    Google Scholar 

  2. Joseph, D.D. and Preziosi, L., Heat Waves, Rev. Mod. Phys., 1989, vol. 61, no. 1, p. 41.

    Article  Google Scholar 

  3. Kaminski, W., Hyperbolic Heat Conduction Equation for Materials with a Non-Homogeneous Inner Structure, J. Heat Transfer, 1990, vol. 112, p. 555.

    Article  CAS  Google Scholar 

  4. Tzou, D.Y., Macroscale to Microscale Heat Transfer: The Lagging Behavior, New York: Taylor and Francis, 1997.

    Google Scholar 

  5. Cimmelli, V.A., Different Thermodynamic Theories and Different Heat Conduction Laws, J. Non-Equilib. Thermodyn., 2009, vol. 34, p. 299.

    Article  CAS  Google Scholar 

  6. Onsager, L., Reciprocal Relations in Irreversible Processes. I, Phys. Rev., 1931, vol. 37, p. 405.

    Article  CAS  Google Scholar 

  7. Onsager, L., Reciprocal Relations in Irreversible Processes. II, Phys. Rev., 1931, vol. 38, p. 2265.

    Article  CAS  Google Scholar 

  8. Eckart, C., The Thermodynamics of Irreversible Processes. I: The Simple Fluid, Phys. Rev., 1940, vol. 58, p. 267.

    Article  CAS  Google Scholar 

  9. Eckart, C., The Thermodynamics of Irreversible Processes. II: The Mixtures, Phys. Rev., 1940, vol. 58, p. 269.

    Article  CAS  Google Scholar 

  10. Eckart, C., The Thermodynamics of Irreversible Processes. III: Relativistic Theory of Simple Fluid, Phys. Rev., 1940, vol. 58, p. 919.

    Article  CAS  Google Scholar 

  11. Casimir, H.B.G., On Onsager’s Principle of Microscopic Reversibility, Rev. Mod. Phys., 1945, vol. 17, p. 343.

    Article  Google Scholar 

  12. Meixner, J. and Reik, H., Thermodynamik der irreversiblen Prozesse, Berlin: Springer, 1959.

    Google Scholar 

  13. Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, New York: Interscience, 1961, 2nd ed.

    Google Scholar 

  14. De Groot, S. and Mazur, P., Non-Equilibrium Thermodynamics, London: Dover, 1962.

    Google Scholar 

  15. Fitts, D.D., Non-Equilibrium Thermodynamics, New York: McGraw-Hill, 1950.

    Google Scholar 

  16. Gyarmati, I., Non-Equilibrium Thermodynamics: Field Theory and Variation Principles, Berlin: Springer, 1970.

    Book  Google Scholar 

  17. Katchalsky, A., Nonequilibrium Thermodynamics and Biophysics, Cambridge: Harvard Univ. Press, 1965.

    Google Scholar 

  18. Haaze, R., Thermodynamics of Non-Equilibrium Processes, Reading, Mass.: Addison-Wesley, 1969.

    Google Scholar 

  19. Wisniewski, S., Staniszewski, B., and Szymanik, R., Thermodynamics of Nonequilibrium Processes, Dordrecht: Reidel, 1976.

    Google Scholar 

  20. Forland, K.S., Forland, T., and Kjelstrup, S., Irreversible Thermodynamics: Theory and Applications, Trondheim: Tapir, 2001, 3rd ed.

    Google Scholar 

  21. Samohyl, I., Thermodynamics of Irreversible Processes in Fluid Mixtures: Approached by Rational Thermodynamics, Leipzig: Teubner, 1987.

    Google Scholar 

  22. Kuiken, G.D.C., Thermodynamics of Irreversible Processes: Applications to Diffusion and Rheology, New York: Wiley, 1994.

    Google Scholar 

  23. Lavenda, B.H., Thermodynamics of Irreversible Processes, London: Macmillan, 1978.

    Google Scholar 

  24. Stratonovich, R.L., Nelineinaya neravnovesnaya termodinamika (Nonlinear Nonequilibrium Thermodynamics), Moscow: Nauka, 1984.

    Google Scholar 

  25. Kondepudi, D. and Prigogine, I., Modern Thermodynamics: From Heat Engines to Dissipative Structures, New York: Wiley, 1998.

    Google Scholar 

  26. Sobolev, S.L., Transport Processes and Traveling Waves in Systems with Local Nonequilibrium, Phys.-Usp., 1991, vol. 34, p. 217.

    Google Scholar 

  27. Sobolev, S.L., Local Non-Equilibrium Transport Models, Phys.-Usp., 1997, vol. 40, p. 1043.

    Article  Google Scholar 

  28. Nettleton, R.E., Compression Relaxation in Liquids, J. Acoust. Soc. Am., 1959, vol. 31, p. 557.

    Article  Google Scholar 

  29. Nettleton, R.E., Relaxation Theory of Thermal Conduction in Liquids, Phys. Fluids, 1960, vol. 3, p. 216.

    Article  Google Scholar 

  30. Nettleton, R.E., Density Fluctuations and Heat Conduction in a Pure Liquid, Phys. Fluids, 1961, vol. 4, p. 74.

    Article  CAS  Google Scholar 

  31. Nettleton, R.E., Inertial Effects in the Phenomenological Theory of Thermal Diffusion in Liquids, Il Nuovo Cimento, 1963, vol. 29, p. 952.

    Article  Google Scholar 

  32. Müller, I., Zum Paradox der Warmeleitungstheorie, Zs. Phys., 1967, vol. 198, p. 329.

    Article  Google Scholar 

  33. Müller, I., Towards the Relativistic Thermodynamics, Arch. Ration. Mech. Anal., 1969, vol. 34, p. 259.

    Article  Google Scholar 

  34. Lambermont, J. and Lebon, G., On the Derivation of the Gibbs Equation for a Class of Rheological Bodies, Int. J. Non-Linear Mech., 1974, vol. 9, p. 55.

    Article  Google Scholar 

  35. Lebon, G. and Lambermont, J., A Consistent Thermodynamic Formulation of the Field Equations for Elastic Bodies Removing the Paradox of Infinite Speed of Propagation of Thermal Signals, J. Mec., 1976, vol. 15, p. 579.

    Google Scholar 

  36. Hutter, K., Foundations of Thermodynamics, Its Basic Postulates and Implications: A Review of Modern Thermodynamics, Acta Mech., 1977, vol. 27, p. 1.

    Article  Google Scholar 

  37. Lebon, G. and Casas-Vázquez, J., On the Stability Conditions for Heat Conduction with Finite Wave Speed, Phys. Lett. A, 1975, vol. 55, p. 393.

    Article  Google Scholar 

  38. Lebon, G., Jou, D., and Casas-Vázquez, J., An Extension of the Local Equilibrium Hypothesis, J. Phys. A: Math. Gen., 1980, vol. 13, p. 275.

    Article  CAS  Google Scholar 

  39. Lebon, G., Perez-Garcia, C., and Casas-Vázquez, J., On a New Thermodynamic Description of Viscoelastic Materials, Physica A, 1986, vol. 137, p. 531.

    Article  Google Scholar 

  40. Jou, D., Casas-Vázquez, J., and Lebon, G., A Dynamical Interpretation of Second-Order Constitutive Equations of Hydrodynamics, J. Non-Equilib. Thermodyn., 1979, vol. 4, p. 349.

    CAS  Google Scholar 

  41. Bampi, F. and Morro, A., Viscous Fluids with Hidden Variables and Hyperbolic Systems, Wave Motion, 1980, vol. 2, no. 2, p. 153.

    Article  Google Scholar 

  42. Bampi, F., A. Morro A. Dissipative Effects and Waves in Magnetofluiddynamics, J. Non-Equilib. Thermodyn., 1981, vol. 6, p. 1.

    Article  Google Scholar 

  43. Jou, D., Bampi, F., and Morro, A., Thermodynamics Description of Ultrasonic Attenuation in Metals, J. Non-Equilib. Thermodyn., 1982, vol. 7, p. 201.

    Article  Google Scholar 

  44. Evans, D.J. and Hanley, H.J.M., A Thermodynamics of Steady Homogeneous Shear Flow, Phys. Lett. A, 1980, vol. 80, p. 175.

    Article  Google Scholar 

  45. Carcía-Colín L.S., Fuentes y Martínez, G.J., A Kinetic Derivation of Extended Irreversible Thermodynamics, J. Stat. Phys., 1982, vol. 29, p. 387.

    Article  Google Scholar 

  46. Woods, L.C., On the Thermodynamics of Nonlinear Constitutive Relations in Gas Dynamics, J. Fluid Mech., 1980, vol. 101, p. 225.

    Article  Google Scholar 

  47. Jou, D., Casas-Vázquez, J., and Lebon, G., Extended Irreversible Thermodynamics, Rep. Prog. Phys., 1988, vol. 51, p. 1105.

    Article  Google Scholar 

  48. Muschik, W., Aspects of Non-Equilibrium Thermodynamics, Singapore: World Scientific, 1990.

    Google Scholar 

  49. Garsia-Colin, L.S. and Uribe, F.J., Extended Irreversible Thermodynamics beyond the Linear Regime: A Critical Overview, J. Non-Equilib. Thermodyn., 1991, vol. 16, p. 89.

    Google Scholar 

  50. Jou, D., Casas-Vázquez, J., and Lebon, G., Extended Irreversible Thermodynamics, Berlin: Springer, 2010, 4th ed.

    Book  Google Scholar 

  51. Müller, I. and Ruggeri, T., Extended Thermodynamics, New York: Springer, 1993.

    Book  Google Scholar 

  52. Netletton, R.E. and Sobolev, S.L., Applications of Extended Thermodynamics to Chemical, Rheological and Transport Processes. Part I. Approaches and Scalar Rate Processes, J. Non-Equilib. Thermodyn., 1995, vol. 20, p. 205.

    Google Scholar 

  53. Verhas, J., Thermodynamics and Rheology, Dordrecht: Kluwer, 1997.

    Google Scholar 

  54. Jou, D., Casas-Vázquez, J., and Lebon, G., Extended Irreversible Thermodynamics Revisited (1988–98), Rep. Prog. Phys., 1999, vol. 62, p. 1035.

    Article  CAS  Google Scholar 

  55. Luzzi, R., Vasconcellos, A.R., and Ramos, J.G., Statistical Foundations of Irreversible Thermodynamics, Stuttgart: Teuberg, 2000.

    Book  Google Scholar 

  56. Jou, D., Casas-Vázquez, J., and Criado-Sancho, M., Thermodynamics of Fluids under Flow, Berlin: Springer, 2010, 2nd ed.

    Google Scholar 

  57. Casas-Vázquez, J. and Jou, D., Temperature in Non-Equilibrium States: A Review of Open Problems and Current Proposals, Rep. Prog. Phys., 2003, vol. 66, p. 1937.

    Article  Google Scholar 

  58. Lebon, C., Jou, D., and Casas-Vázquez, J., Understanding of Non-Equilibrium Thermodynamics, Berlin: Springer, 2008.

    Book  Google Scholar 

  59. Herlach, D.M., Non-Equilibrium Solidification of Undercooled Metallic Melts, Mater. Sci. Eng. A, 1994, vol. 12, nos. 4–5, p. 177.

    Google Scholar 

  60. Trivedi, R. and Kurz, W., Dendritic Growth, Int. Mater. Rev., 1994, vol. 39, no. 2, p. 49.

    Article  CAS  Google Scholar 

  61. Aziz, M.J. and Kaplan, T., Continuous Growth Model for Interface Motion during Alloy Solidification, Acta Metall., 1988, vol. 36, p. 2335.

    Article  CAS  Google Scholar 

  62. Mullins, W.W. and Sekerka, R.F., Stability of a Planar Interface during Solidification of a Dilute Binary Alloy, J. Appl. Phys., 1964, vol. 35, p. 444.

    Article  Google Scholar 

  63. Merchant, G.J. and Davis, S.H., Morphological Instability in Rapid Directional Solidification, Acta Metall. Mater., 1990, vol. 38, p. 2683.

    Article  CAS  Google Scholar 

  64. Aziz, M.J., Non-Equilibrium Interface Kinetics during Rapid Solidification, Mater. Sci. Eng. A, 1994, vol. 178, nos. 1–2, p. 167.

    CAS  Google Scholar 

  65. Cook, S.J. and Clancy, P., Impurity Segregation in Lennard-Jones A/AB Heterostructures. I. The Effect of Lattice Strain, J. Chem. Phys., 1993, vol. 99, p. 2175.

    Article  CAS  Google Scholar 

  66. Yu, Q. and Clancy, P., Molecular Dynamics Simulation of Crystal Growth in Si1 − x Gex/Si(100) Heterostructures, J. Cryst. Growth, 1995, vol. 149, no. 1, p. 45.

    Article  CAS  Google Scholar 

  67. Ovsienko, D.E., Zarozhdenie i rost kristallov iz rasplava (Nucleation and Growth of Crystals from the Melt), Kiev: Naukova Dumka, 1994.

    Google Scholar 

  68. Galenko, P.K., Kharanzhevskii, E.V., and Danilov, D.A., Rapid Crystallization of Structural Steel during Laser Processing of the Surface, Tech. Phys., 2002, vol. 47, p. 561.

    Article  CAS  Google Scholar 

  69. Willnecker, R., Herlach, D.M., and Feuerbacher, B., Evidence of Nonequilibrium Process in Rapid Solidification of Undercooled Melts, Phys. Rev. Lett., 1989, vol. 62, p. 2707.

    Article  CAS  Google Scholar 

  70. Willnecker, R., Herlach, D.M., and Feuerbacher, B., Grain Refinement Induced by a Critical Crystal Growth Velocity in Undercooled Melts, Appl. Phys. Lett., 1990, vol. 56, p. 324.

    Article  CAS  Google Scholar 

  71. Sobolev, S.L., Local-Nonequilibrium Model for Rapid Solidification of Undercooled Melts, Phys. Lett. A, 1995, vol. 199, p. 383.

    Article  CAS  Google Scholar 

  72. Sobolev, S.L., Effects in Local Non-Equilibrium Solute Diffusion on Rapid Solidification of Alloys, Phys. Status Solidi A, 1996, vol. 156, p. 293.

    Article  CAS  Google Scholar 

  73. Galenko, P. and Sobolev, S., Local-Nonequilibrium Effect on Undercooling in Rapid Solidification of Alloy, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 1997, vol. 55, p. 343.

    Article  CAS  Google Scholar 

  74. Sobolev, S., Rapid Solidification under Local Nonequilibrium Conditions, Phys. Rev. E, 1997, vol. 55, p. 6845.

    Article  CAS  Google Scholar 

  75. Galenko, P.K. and Danilov, D.A., Local-Nonequilibrium Effect on Rapid Dendritic Growth in a Binary Alloy Melt, Phys. Lett. A, 1997, vol. 235, p. 271.

    Article  CAS  Google Scholar 

  76. Galenko, P.K. and Danilov, D.A., Model for Free Dendritic Alloy Growth under Interfacial and Bulk Phase Nonequilibrium Conditions, J. Cryst. Growth, 1999, vol. 197, p. 992.

    Article  CAS  Google Scholar 

  77. Wild, G., Willnecker, R., and Herlach, D.M., Nonequilibrium Solidification of Hypercooled Co-Pd Melts, J. Appl. Phys., 1998, vol. 83, p. 3028.

    Article  Google Scholar 

  78. Serdyukov, S.I., Local Non-Equilibrium Theory of the Rapid Solidification of Undercooled Melts, Tezisy dokl. XV Mezhd. konf. po khimicheskoi termodinamike v Rossii (Proc. 15th Int. Conf. on Chemical Thermodynamics in Russia), Moscow, 2005, vol. 2, p. 199.

    Google Scholar 

  79. Serdyukov, S.I., Mathematical Modeling and Extended Thermodynamics of Heat and Mass Transfer Processes, Doctoral (Chem.) Dissertation, Moscow: Moscow State Univ., 2005.

    Google Scholar 

  80. Taylor, G., Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proc. R. Soc. London, Ser. A, 1953, vol. 219, p. 186.

    Article  CAS  Google Scholar 

  81. Danckwerts, P.V., Continuous Flow Systems. Distribution of Residence Times, Chem. Eng. Sci., 1953, vol. 2, p. 1.

    Article  CAS  Google Scholar 

  82. Safonov, M.S., Existence of Negative Values of Taylor’s Longitudinal Dispersion Coefficient, Teor. Osn. Khim. Tekhnol., 1972, vol. 6, p. 127.

    Google Scholar 

  83. Safonov, M.S. and Voskresenskii, N.M., Longitudinal Dispersion under Conditions of a Homogeneous Reaction in Laminar Flow, Teor. Osn. Khim. Tekhnol., 1975, vol. 9, p. 375.

    CAS  Google Scholar 

  84. Voskresenskii, N.M. and Safonov, M.S., Dependence of the Sign of the Longitudinal Dispersion Coefficient in Laminar Flow on the Velocity Profile under Conditions of Interfacial Transfer, Teor. Osn. Khim. Tekhnol., 1977, vol. 11, p. 606.

    Google Scholar 

  85. Carbonell, R.G. and Whitaker, S., Dispersion in Pulsed Systems. II. Theoretical Developments for Passive Dispersion in Porous Media, Chem. Eng. Sci., 1983, vol. 38, p. 1795.

    Article  CAS  Google Scholar 

  86. Levenspiel, O., Chemical Reaction Engineering, New York: Wiley, 1972.

    Google Scholar 

  87. Dilman, V.V. and Kronberg, A.E., Relaxation Effects in Longitudinal Mixing, Teor. Osn. Khim. Tekhnol., 1983, vol. 17, p. 614.

    CAS  Google Scholar 

  88. Dilman, V.V., Generalized Diffusion Model of Longitudinal Mixing, Teor. Osn. Khim. Tekhnol., 1987, vol. 21, p. 66.

    CAS  Google Scholar 

  89. Vesterterp, K.R., Dilman, V.V., Kronberg, A.E., and Benneker, A., Wave Model of Longitudinal Mixing, Teor. Osn. Khim. Tekhnol., 1995, vol. 29, p. 580.

    Google Scholar 

  90. Dilman, V.V., Benneker, A., Kronberg, A.E., and Vesterterp, K.R., Wave Model for Longitudinal Dispersion in Chemical and Heat-Transfer Processes with Boundary Conditions of the Second and Third Kind at the Channel Surface, Theor. Found. Chem. Eng., 1997, vol. 31, p. 375.

    CAS  Google Scholar 

  91. Westerterp, K.R., Dilman, V.V., and Kronberg, A.E., Wave Model for Longitudinal Dispersion: Development of the Model, AIChE J., 1995, vol. 41, p. 2013.

    Article  CAS  Google Scholar 

  92. Westerterp, K.R., Dilman, V.V., Kronberg, A.E., and Benneker, A.H., Wave Model for Longitudinal Dispersion: Analysis and Applications, AIChE J., 1995, vol. 41, p. 2029.

    Article  CAS  Google Scholar 

  93. Westerterp, K.R., Kronberg, A.E., Benneker, A.H., and Dilman, V.V., Wave Concept in the Theory of Hydrodynamic Dispersion — A Maxwell Type Approach, Trans. Inst. Chem. Eng., 1996, vol. p. 944.

  94. Kronberg, A.E. and Westerterp, K.R., Non-Equilibrium Effects in Fixed-Bed Interstitial Fluid Dispersion, Chem. Eng. Sci., 1999, vol. p. 3977.

    Google Scholar 

  95. Voskresenskii, N.M., Serdyukov, S.I., and Safonov, M.S., Hyperbolic Concept of Longitudinal Dispersion and the Modeling of Structured Catalyst Units, Proc. 16th Int. Conf. on Chemical Reactors: CHEMREACTOR-16, Berlin, 2003, p. 375.

  96. Khon’kin, A.D., On Taylor and Hyperbolic Models of the Unsteady-State Longitudinal Dispersion of a Passive Impurity in Convection-Diffusion Processes, Prikl. Mat. Mekh., 2000, vol. 64, p. 631.

    Google Scholar 

  97. Khonkin, A.D. and Orlov, A.V., Derivation of the Modified Diffusion Equations in a Gas Mixture, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 1994, vol. 49, p. 906.

    Article  CAS  Google Scholar 

  98. Zubarev, D.N. and Khon’kin, A.D., Method of Construction of Normal Solutions for Kinetic Equations with the Use of Boundary Conditions, Teor. Mat. Fiz., 1972, vol. 11, p. 403.

    Article  Google Scholar 

  99. Safonov, M.S. and Voskresenskii, N.M., Transport Structure of Contactors, Teor. Osn. Khim. Tekhnol., 1988, vol. 22, p. 463.

    CAS  Google Scholar 

  100. Safonov, M.S., Borisov, S.A., Bel’nov, V.K., et al., Comparison of Catalyst Arrangement Structures in a Plate-Type Reactor-Heat Exchanger Unit, Teor. Osn. Khim. Tekhnol., 1989, vol. 23, p. 50.

    CAS  Google Scholar 

  101. Safonov, M.S., Voskresenskii, N.M., and Bel’nov, V.K., Optimizing the Structure of a Regenerative Heat Exchanger According to Compactness and Thermal Exergy Saving Criteria, Teor. Osn. Khim. Tekhnol., 1991, vol. 25, p. 554.

    CAS  Google Scholar 

  102. Granovskii, M.S and Safonov, M.S., Enhancing the Efficiency of a Plate-Type Reactor-Heat Exchanger Unit by Organizing a Reactant Mixture Counterflow, Teor. Osn. Khim. Tekhnol., 1992, vol. 26, p. 137.

    CAS  Google Scholar 

  103. Safonov, M.S., Voskresenskii, N.M., Pozharskii, S.B., and Bel’nov, V.K., Improvement of the Thermodynamic Efficiency and Compactness of Technological Systems by Changing Their Structure, Theor. Found. Chem. Eng., 1997, vol. 31, p. 486.

    CAS  Google Scholar 

  104. Voskresenskii, N.M., Belnov, V.K., Serdyukov, S.I., and Safonov, M.S., Estimating the Parameters of an Adiabatic Steam Methane Conversion Reactor with a Regular Catalytic Block, Theor. Found. Chem. Eng., 2002, vol. 36, p. 166.

    Article  CAS  Google Scholar 

  105. Voskresenskii, N.M., Serdyukov, S.I., Karpov, I.I., and Barelko, V.V., Mathematical Modeling of Heat Transfer Process in the Catalyst Unit with Ordering Elements, Chem. Eng. Sci., 2003, vol. 58, p. 4895.

    Article  CAS  Google Scholar 

  106. Serdyukov, S.I., Belnov V.K., Voskresenskii N.M., et al., Heat Waves in the Structured Catalytic Units, Proc. 4th Int. Conf. on Unsteady-State Processes in Catalysis, Montreal, 2003, p. 25.

  107. Karpov, I.I., Study of Planar Rhodium and Platinum Methane Reforming Catalysts and Mathematic Modeling of Catalyst Monoliths for Cooling of Heat-Loaded Surfaces, Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State Univ., 2004.

    Google Scholar 

  108. Serdyukov, S.I., Danil’chuk, T.N., Orlov, et al., Planar Nickel-Containing Catalysts for the Carbon-Dioxide Conversion of Methane, Pet. Chem., 2003, vol. 43, p. 399.

    Google Scholar 

  109. Serdyukov, S.I., Karpov, I.I., Drobakha, G.S, et al., Foil-Supported Pt/γ-Al2O3 and Rh/γ-Al2O3 Catalysts for Carbon Dioxide Methane Reforming, Pet. Chem., 2011, vol. 51, p. 418.

    Article  CAS  Google Scholar 

  110. Ostoshevskaya, O.Yu., Serdyukov, S.I., and Safonov, M.S., Supported Catalysts for Ammonia Decomposition: Prepared by Plasmochemical Treatment: I. The Effect of Pretreatment Conditions on the Catalytic Properties, Kinet. Catal., 1996, vol. 37, p. 863.

    CAS  Google Scholar 

  111. Ostoshevskaya, O.Yu., Serdyukov, S.I., and Fabrichnyi, P.B., Supported Catalysts for Ammonia Decomposition Prepared by Plasmochemical Treatment: II. A Study of Phase Transformations, Kinet. Catal., 1996, vol. 37, p. 867.

    CAS  Google Scholar 

  112. Safonov, M.S., Veselkova, O.I., Zuev, et al., USSR Inventor’s Certificate no. 1825654, Byull. Izobret., 1993, no. 25.

    Google Scholar 

  113. Safonov, M.S., Serdyukov, S.I., and Voskresenskii, N.M., RF Patent 2055635, 1996.

  114. Papayannakos, N. and Markatos, N.C., Mathematical Modeling of the Performance of Non-Isothermal Membrane Reactors, Int. J. Heat Mass Transfer, 1997, vol. 40, p. 2407.

    Article  Google Scholar 

  115. Petukhov, B.S. and Shikov, V.K., Spravochnik po teploobmennikam (Handbook on Heat Exchangers), Moscow: Energoatomizdat, 1987, vol. 1.

    Google Scholar 

  116. Kutateladze, S.S., Osnovy teorii teploobmena (Foundations of Heat Transfer Theory), Moscow: Atomizdat, 1979.

    Google Scholar 

  117. Reid, R., Prausnitz, J., and Sherwood, T., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.

    Google Scholar 

  118. Serdyukov, S.I., Voskresenskii, N.M., Belnov, V.K., and Karpov, I.I., Extended Irreversible Thermodynamics and Generalization of the Dual-Phase-Lag Model in Heat Transfer, J. Non-Equilib. Thermodyn., 2003, vol. 28, p. 207.

    Article  Google Scholar 

  119. Hays-Stang, K.J. and Haji-Sheikh, A., A Unified Solution for Heat Conduction in Thin Films, Int. J. Heat Mass Transfer, 1999, vol. 42, p. 455.

    Article  CAS  Google Scholar 

  120. Antaki, P.J., Solution for Non-Fourier Dual Phase Lag Heat Conduction in a Semi-Infinite Slab with Surface Heat Flux, Int. J. Heat Mass Transfer, 1998, vol. 41, p. 2253.

    Article  CAS  Google Scholar 

  121. Serdyukov, S.I., A New Version of Extended Irreversible Thermodynamics and Dual-Phase-Lag Model in Heat Transfer, Phys. Lett. A, 2001, vol. 281, p. 16.

    Article  CAS  Google Scholar 

  122. Serdyukov, S.I. and Voskresenskii, N.M., Behavior of Entropy in Non-Classical Heat Conduction of Incompressible Media, J. Non-Equilib. Thermodyn., 2010, vol. 35, p. 323.

    Article  Google Scholar 

  123. Criado-Sancho, M. and Llebot, J.E., Behavior of Entropy in Hyperbolic Heat Conduction, Phys. Rev. E, 1993, vol. 47, p. 4104.

    Article  Google Scholar 

  124. Serdyukov, S.I., Dual-Phase-Lag Transfer Equations and Entropy Behavior in Relaxation Hydrodynamics, Physica A, 2012, vol. 391, p. 5871.

    Article  Google Scholar 

  125. Fort, J. and Llebot, J.E., Behavior of Entropy in Relaxation Hydrodynamics, Phys. Lett. A, 1995, vol. 205, p. 281.

    Article  CAS  Google Scholar 

  126. Serdyukov, S.I., A New Version of Extended Irreversible Thermodynamics: The Principal Postulate and Hyperbolic Equations of Thermal Diffusion, Russ. J. Chem. Phys. A, 1997, vol. 71, p. 1412.

    Google Scholar 

  127. Serdyukov, S.I., Extended Thermodynamics of Irreversible Processes Predicts a New Type of Thermodiffusion, in Thermodiffusion: Basics and Applications, BouAli, M.M. and Platten, J.K, Eds., Arrasate: Mondragon Unib., 2006, p. 63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Serdyukov.

Additional information

Original Russian Text © S.I. Serdyukov, 2013, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2013, Vol. 47, No. 2, pp. 122–138.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serdyukov, S.I. Higher order heat and mass transfer equations and their justification in extended irreversible thermodynamics. Theor Found Chem Eng 47, 89–103 (2013). https://doi.org/10.1134/S0040579513020085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579513020085

Keywords

Navigation