Skip to main content
Log in

Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We obtain characterizations (and prove the corresponding equivalence of norms) of function spaces B sm pq (\( \mathbb{I} \) k) and L sm pq (\( \mathbb{I} \) k) of Nikol’skii-Besov and Lizorkin-Triebel types, respectively, in terms of representations of functions in these spaces by Fourier series with respect to a multiple system \( \mathcal{W}_m^\mathbb{I} \) of Meyer wavelets and in terms of sequences of the Fourier coefficients with respect to this system. We establish order-sharp estimates for the approximation of functions in B sm pq (\( \mathbb{I} \)) and L sm pq (\( \mathbb{I} \) k) by special partial sums of these series in the metric of L r (\( \mathbb{I} \) k) for a number of relations between the parameters s, p, q, r, and m (s = (s 1, ..., s n ) ∈ ℝ n+ , 1 ≤ p, q, r ≤ ∞, m = (m 1, ..., m n ) ∈ ℕn, k = m 1 +... + m n , and \( \mathbb{I} \) = ℝ or \( \mathbb{T} \)). In the periodic case, we study the Fourier widths of these function classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems, 2nd ed. (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  2. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Imbedding Theorems, 2nd ed. (Nauka, Moscow, 1996) [in Russian].

    MATH  Google Scholar 

  3. H. Triebel, Theory of Function Spaces (Birkhäuser, Basel, 1983; Mir, Moscow, 1986).

    Book  Google Scholar 

  4. H.-J. Schmeisser and H. Triebel, Topics in Fourier Analysis and Function Spaces (J. Wiley & Sons, Chichester, 1987).

    Google Scholar 

  5. T. I. Amanov, Spaces of Differentiable Functions with Dominating Mixed Derivative (Nauka, Alma-Ata, 1976) [in Russian].

    Google Scholar 

  6. V. N. Temlyakov, Approximation of Functions with a Bounded Mixed Derivative (Nauka, Moscow, 1986), Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 178 [Proc. Steklov Inst. Math. 178 (1989)].

    Google Scholar 

  7. V. N. Temlyakov, Approximation of Periodic Functions (Nova Sci. Publ., Commack, NY, 1993).

    MATH  Google Scholar 

  8. H.-J. Schmeisser, “On Spaces of Functions and Distributions with Mixed Smoothness Properties of Besov-Triebel-Lizorkin Type. I, II,” Math. Nachr. 98, 233–250 (1980); 106, 187–200 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Yamazaki, “Boundedness of Product Type Pseudodifferential Operators on Spaces of Besov Type,” Math. Nachr. 133, 297–315 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  10. H.-J. Schmeisser, “Recent Developments in the Theory of Function Spaces with Dominating Mixed Smoothness,” in Nonlinear Analysis, Function Spaces and Applications: Proc. Spring School, Prague, May 30–June 6, 2006 (Czech Acad. Sci., Math. Inst., Prague, 2007), Vol. 8, pp. 145–204.

    Google Scholar 

  11. D. B. Bazarkhanov, “Characterizations of the Nikol’skii-Besov and Lizorkin-Triebel Function Spaces of Mixed Smoothness,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 243, 53–65 (2003) [Proc. Steklov Inst. Math. 243, 46–58 (2003)].

    MathSciNet  Google Scholar 

  12. D. B. Bazarkhanov, “ϕ-Transform Characterization of the Nikol’skii-Besov and Lizorkin-Triebel Function Spaces with Mixed Smoothness,” East J. Approx. 10(1–2), 119–131 (2004).

    MATH  MathSciNet  Google Scholar 

  13. D. B. Bazarkhanov, “Equivalent (Quasi)norms for Certain Function Spaces of Generalized Mixed Smoothness,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 248, 26–39 (2005) [Proc. Steklov Inst. Math. 248, 21–34 (2005)].

    MathSciNet  Google Scholar 

  14. D. B. Bazarkhanov, “Different Representations and Equivalent Norms for Nikol’skii-Besov and Lizorkin-Triebel Spaces of Generalized Mixed Smoothness,” Dokl. Akad. Nauk 402(3), 298–302 (2005) [Dokl. Math. 71 (3), 373–377 (2005)].

    MathSciNet  Google Scholar 

  15. J. Vybiral, Function Spaces with Dominating Mixed Smoothness (Inst. Math., Pol. Acad. Sci., Warszawa, 2006), Diss. Math. 436.

    Google Scholar 

  16. M. Hansen and J. Vybiral, “The Jawerth-Franke Embedding of Spaces with Dominating Mixed Smoothness,” Georgian Math. J. 16(4), 667–682 (2009).

    MATH  MathSciNet  Google Scholar 

  17. Y. Meyer, Wavelets and Operators (Cambridge Univ. Press, Cambridge, 1992), Cambridge Stud. Adv. Math. 37.

    MATH  Google Scholar 

  18. B. S. Kashin and A. A. Saakyan, Orthogonal Series, 2nd ed. (AFTs, Moscow, 1999) [in Russian].

    MATH  Google Scholar 

  19. P. Wojtaszczyk, A Mathematical Introduction to Wavelets (Cambridge Univ. Press, Cambridge, 1997).

    Book  MATH  Google Scholar 

  20. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, NJ, 1971; Mir, Moscow, 1974).

    MATH  Google Scholar 

  21. E. Hernández and G. Weiss, A First Course on Wavelets (CRC Press, Boca Raton, FL, 1996), Stud. Adv. Math.

    Book  MATH  Google Scholar 

  22. H. Triebel, Theory of Function Spaces. III (Birkhäuser, Basel, 2006).

    MATH  Google Scholar 

  23. C. Fefferman and E. M. Stein, “Some Maximal Inequalities,” Am. J. Math. 93, 107–115 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  24. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton Univ. Press, Princeton, NJ, 1993).

    MATH  Google Scholar 

  25. R. A. DeVore, S. V. Konyagin, and V. N. Temlyakov, “Hyperbolic Wavelet Approximation,” Constr. Approx. 14(1), 1–26 (1998).

    Article  MathSciNet  Google Scholar 

  26. H. Wang, “Representation and Approximation of Multivariate Functions with Mixed Smoothness by Hyperbolic Wavelets,” J. Math. Anal. Appl. 291, 698–715 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  27. P. I. Lizorkin, “On Bases and Multipliers in the Spaces B p,θr (Γ),” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 143, 88–104 (1977) [Proc. Steklov Inst. Math. 143, 93–110 (1980)].

    MathSciNet  Google Scholar 

  28. D. G. Orlovskiĭ, “On Multipliers in the Space B rp,θ ,” Anal. Math. 5, 207–218 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  29. H.-J. Schmeisser, “An Unconditional Basis in Periodic Spaces with Dominating Mixed Smoothness Properties,” Anal. Math. 13, 153–168 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  30. Dinh Dũng, “Stability in Periodic Multi-wavelet Decompositions and Recovery of Functions,” East J. Approx. 11(4), 447–479 (2005).

    MATH  MathSciNet  Google Scholar 

  31. A. V. Andrianov and V. N. Temlyakov, “On Two Methods of Generalization of Properties of Univariate Function Systems to Their Tensor Product,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 219, 32–43 (1997) [Proc. Steklov Inst. Math. 219, 25–35 (1997)].

    MathSciNet  Google Scholar 

  32. É. M. Galeev, “Approximation of Classes of Periodic Functions of Several Variables by Nuclear Operators,” Mat. Zametki 47(3), 32–41 (1990) [Math. Notes 47, 248–254 (1990)].

    MathSciNet  Google Scholar 

  33. É. M. Galeev, “Widths of the Besov Classes B rp,θ (\( \mathbb{T} \) d),” Mat. Zametki 69(5), 656–665 (2001) [Math. Notes 69, 605–613 (2001)].

    MathSciNet  Google Scholar 

  34. A. S. Romanyuk, “Best Approximations and Widths of Classes of Periodic Functions of Several Variables,” Mat. Sb. 199(2), 93–114 (2008) [Sb. Math. 199, 253–275 (2008)].

    MathSciNet  Google Scholar 

  35. H.-J. Schmeisser and W. Sickel, “Spaces of Functions of Mixed Smoothness and Approximation from Hyperbolic Crosses,” J. Approx. Theory 128, 115–150 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  36. T. Ullrich, “Smolyak’s Algorithm, Sampling on Sparse Grids and Sobolev Spaces of Functions of Dominating Mixed Smoothness,” East J. Approx. 14, 1–38 (2008).

    MathSciNet  Google Scholar 

  37. D. B. Bazarkhanov, “Estimates of the Fourier Widths of Classes of Nikol’skii-Besov and Lizorkin-Triebel Types of Periodic Functions of Several Variables,” Mat. Zametki 87(2), 305–308 (2010) [Math. Notes 87, 281–284 (2010)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Bazarkhanov.

Additional information

Original Russian Text © D.B. Bazarkhanov, 2010, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Vol. 269, pp. 8–30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazarkhanov, D.B. Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I. Proc. Steklov Inst. Math. 269, 2–24 (2010). https://doi.org/10.1134/S0081543810020021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543810020021

Keywords

Navigation