Skip to main content
Log in

Methods and applications of ultrametric and p-adic analysis: From wavelet theory to biophysics

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Nauka, Moscow, 1994;World Sci., Singapore, 1994).

    Google Scholar 

  2. N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics (Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow, 1946) [in Russian].

    Google Scholar 

  3. L. Accardi, Y. G. Lu, and I. V. Volovich, Quantum Theory and Its Stochastic Limit (Springer-Verlag, Berlin, 2002).

    MATH  Google Scholar 

  4. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, Pa., 1992; Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2001).

    MATH  Google Scholar 

  5. I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet Theory (Moscow, Fizmatlit, 2005) [in Russian].

    MATH  Google Scholar 

  6. Y. Meyer,Wavelets and Operators (Cambridge Univ. Press, Cambridge, 1992).

  7. M. Mezard, G. Parisi, and M. Virasoro, Spin-Glass Theory and Beyond (World Sci., Singapore, 1987).

    MATH  Google Scholar 

  8. H. Frauenfelder, S.G. Sligar, and P.G. Wolynes, “The Energy Landscape and Motions of Proteins,” Science 254, 1598–1603 (1991).

    Article  Google Scholar 

  9. H. Frauenfelder, B. H. McMahon, and P. W. Fenimore, “Myoglobin: The Hydrogen Atom of Biology and Paradigm of Complexity,” PNAS 100(15), 8615–8617 (2003).

    Article  Google Scholar 

  10. D. J. Wales, M. A. Miller, and T. R. Walsh, “Archetypal Energy Landscapes,” Nature 394, 758–760 (1998).

    Article  Google Scholar 

  11. P. G. Wolynes, J. Onuchic, and D. Thirumalai, “Navigating the Folding Routes,” Science 267, 1619–1620 (1995).

    Article  Google Scholar 

  12. L. A. Blyumenfel’d, Problems of Biological Physics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  13. E. Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences,” Comm. Pure Appl. Math. 13(1), 1–14 (1960); I. M. Gelfand, “There is only one thing which is more unreasonable than the unreasonable effectiveness of mathematics in physics, and this is the unreasonable ineffectiveness of mathematics in biology.”

    Article  MATH  Google Scholar 

  14. F. Hausdorff, “Erweiterung einer Homeomorphie,” Fund. Math. 16, 353–360 (1930); “Unber innere Abbildungen,” Fund. Math. 23, 279–299 (1934).

    MATH  Google Scholar 

  15. M. Krasner, “Nombres semi-reels et espaces ultrametriques,” C.R. Acad. Sci. Paris 219, 433–435 (1944).

    MathSciNet  MATH  Google Scholar 

  16. N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions (Springer, New York, 1977; Mir, Moscow, 1982).

    MATH  Google Scholar 

  17. K. Mahler, p-Adic Numbers and Their Functions (Cambridge Univ. Press, London, 1980).

    Google Scholar 

  18. W. H. Schikhoff, Ultrametric Calculus. An Introduction to p-Adic Analysis (Cambridge Univ. Press, Cambridge, 1984).

    Google Scholar 

  19. A. Monna, Analyse non-Archimedienne (Springer, New York, 1970).

    MATH  Google Scholar 

  20. A.M. Robert,A Course in p-Adic Analysis (Springer, New York, 2000).

  21. F. Q. Gouvea, p-Adic Numbers (Springer-Verlag, Berlin, 2003).

    Google Scholar 

  22. Z. I. Borevich and I. R. Shafarevich, Number Theory (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  23. I.M. Vinogradov, Foundations of the Theory of Numbers (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  24. A. Weil, Basic Number Theory (Springer, New York, 1967; Mir, Moscow, 1972).

    MATH  Google Scholar 

  25. I. R. Shafarevich, Foundations of Algebraic Geometry (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  26. J. M. Bayod, N. De Grande-De Kimpe, and J. Martinez-Maurica, p-Adic Functional Analysis (Marcel Dekker, New York, 1992).

    MATH  Google Scholar 

  27. S. Bosch, U. Guntzer, and R. Remmert, Non-Archimedean Analysis (Springer-Verlag, Berlin, 1984).

    MATH  Google Scholar 

  28. N. Koblitz, p-Adic Analysis: A Short Course of Recent Work (Cambridge Univ. Press, London, 1980).

    Book  Google Scholar 

  29. B.M. Dwork, Lectures on p-Adic Differential Equations (Springer, New York, 1977).

    Google Scholar 

  30. A. Escassut, Analytic Elements in p-Adic Analysis (World Sci., Singapore, 1995).

    Book  MATH  Google Scholar 

  31. A. Escassut, Ultrametric Banach Algebras (World Sci., Singapore, 2003).

    Book  MATH  Google Scholar 

  32. A. C.M. Van Rooij, Non-Archimedean Functional Analysis (Marcel Dekker, New York, 1978).

    MATH  Google Scholar 

  33. H. Kaneko, “A Class of Spatially Inhomogeneous Dirichlet Spaces of the p-Adic Number Field,” Stoch. Process. Appl. 88, 161–174 (2000).

    Article  MATH  Google Scholar 

  34. V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory (Nauka, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  35. J. P. Serre, Trees (Springer, New York, 1980).

    MATH  Google Scholar 

  36. F. Bruhat, “Distributions sur un groupe localemont compact et applications a l’etude des representations des groupes p-adiques,” Bull. Soc. Math. France 89, 43–75 (1961).

    MathSciNet  MATH  Google Scholar 

  37. I. M. Gelfand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  38. V. S. Vladimirov, “Generalized Functions over the Field of p-Adic Numbers,” Usp. Mat. Nauk 43, 17–53 (1989).

    Google Scholar 

  39. S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, “Associative Algebras of p-Adic Distributions,” Proc. Steklov Inst. Math., No. 2 (245), 22–33 (2004).

  40. Yu. I. Manin, “p-Adic Automorphic Functions,” Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat. 3, 5–92 (1974).

    MathSciNet  Google Scholar 

  41. L. Gerritzen and M. van der Put, Schottky Groups andMumford Curves (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  42. J. Tate, “Rigid Analytic Spaces,” Invent. Math. 12, 257–289 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Bruhat and J. Tits, “Groupes reductifs sur un corps local,” Inst. Hautes Etudes Sci. Publ. Math. 41, 5–251 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  44. F. Bruhat and J. Tits “Groupes reductifs sur un corps local, 2: Schemas en groupes. Existence d’une donnee radicielle valuee,” Inst. Hautes Etudes Sci. Publ. Math. 60, 197–376 (1984).

    Article  MathSciNet  Google Scholar 

  45. A. J. Lemin, “The Category of Ultrametric Spaces Is Isomorphic to the Category of Complete, Atomic, Tree-Like and Real Graduated Lattices LAT,” Algebra Universalis 50(1), 35–49 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  46. J. M. Cohen, F. Colonna, and D. Singman, “Distributions and Measures on the Boundary of a Tree,” J. Math. Anal. Appl. 293, 89–107 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  47. F. Choucroun, “Arbres, espaces ultrametriques et bases de structure uniforme,” Geom. Dedicata 53, 69–74 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  48. N. DeGrande-De Kimpe, A. Khrennikov, and L. Van Hamme, “The Fourier Transform for p-Adic Tempered Distributions,” in p-Adic Functional Analysis (Poznań, 1998) (Marcel Dekker, New York, 1999), pp. 97–125.

    Google Scholar 

  49. L. Van Hamme, “The p-Adic Moment Problem,” in p-Adic Functional Analysis, Ed. by N. De Grande-De Kimpe, S. Navarro, and W. Schikhof (Editorial Univ. Santiago, Santiago, Chile, 1994). pp. 151–163.

    Google Scholar 

  50. W. Schikhof, “A Perfect Duality between p-Adic Banach Spaces and Compactoids,” Indag. Math. (N.S.) 6(3), 325–339 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  51. J. I. Igusa, An Introduction to the Theory of Local Zeta Functions (Am. Math. Soc., Providence, R.I., 2000).

    MATH  Google Scholar 

  52. J. Igusa, Lectures on Forms of Higher Degree (Springer-Verlag, Berlin, 1978).

    MATH  Google Scholar 

  53. D. Kazhdan, “An Algebraic Integration,” in Mathematics: Frontiers and Perspectives (Am. Math. Soc., Providence, R.I., 2000), pp. 93–115.

    Google Scholar 

  54. W. A. Zuniga-Galindo, “On the Poles of Igusa’s Local Zeta Function for Algebraic Sets,” Bull. London Math. Soc. 36, 310–320 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Academic, Dordrecht, 1994).

    MATH  Google Scholar 

  56. A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems, and Biological Models (Kluwer Academic, Dordrecht, 1997).

    Book  MATH  Google Scholar 

  57. A. Yu. Khrennikov, Non-Archimedean Analysis and Its Applications (Fizmatlit, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  58. A. Yu. Khrennikov and M. Nilsson, P-Adic Deterministic and Random Dynamics (Kluwer Academic, Dordrecht, 2004).

    MATH  Google Scholar 

  59. A. N. Kochubei, Pseudodifferential Equations and Stochastics Over Non-Archimedean Fields (Marcel Dekker, New York, 2001).

    Book  Google Scholar 

  60. A. Yu. Khrennikov,Modeling Thinking Processes in p-Adic Systems of Coordinates (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  61. A. Khrennikov, Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena (Kluwer Academic, Dordrecht, 2004).

    MATH  Google Scholar 

  62. A. Khrennikov, Classical and Quantum Mental Models and Freud’s Theory of Unconscious Mind (Växjö Univ. Press, Växjö, 2002).

    Google Scholar 

  63. A. Yu. Khrennikov, “Human Subconscious as a p-Adic Dynamical System,” J. Theor. Biology 193, 179–196 (1998).

    Article  Google Scholar 

  64. S. Albeverio, A. Khrennikov, and B. Tirozzi, “p-Adic Dynamical Systems and Neural Networks,” Math. Models Methods Appl. Sci. 9(9), 1417–1437 (1989).

    Article  MathSciNet  Google Scholar 

  65. A. Khrennikov, “p-Adic Discrete Dynamical Systems and Their Applications in Physics and Cognitive Sciences,” Russ. J. Math. Phys. 11(1), 45–70 (2004).

    MathSciNet  MATH  Google Scholar 

  66. A. Yu. Khrennikov, “Representation of Cognitive Information by Probability Distributions on the Space of Neural Trajectories,” Proc. Steklov Inst.Math., No. 2 (245), 117–134 (2004).

  67. Selected Topics of p-Adic Mathematical Physics and Analysis. Collected Papers. Dedicated to the 80th Birthday of Academician Vasilii Sergeevich Vladimirov. Papers of the 1st Conference on p-Adic Mathematical Physics, Moscow, Russia, October 1–4, 2003, Ed. by I. V. Volovich and E. F. Mishchenko, in Proceedings of the Steklov Institute of Mathematics (Moscow: Maik Nauka/Interperiodica, Moscow, 2004), Vol. 245.

  68. Proceedings of the Second International Conference on p-Adic Mathematical Physics (September 15–21, 2005, Belgrade, Serbia and Montenegro) (Am. Inst. Physics, Melville, 2006).

  69. M. Nilsson, “p-Adic Monomial Dynamical Systems,” Proc. Steklov Inst. Math., No. 2 (245), 189–196 (2004).

  70. M. Nilsson and R. Nyqvist, “The Asymptotic Number of Periodic Points of Discrete p-Adic Dynamical Systems,” Proc. Steklov Inst.Math., No. 2 (245), 197–204 (2004).

  71. P.-A. Svensson, “Perturbed Dynamical Systems in p-Adic Fields,” Proc. Steklov Inst. Math., No. 2 (245), 250–257 (2004).

  72. V. S. Anashin, “Uniformly Distributed Sequences of p-Adic Integers,” Math. Notes 55(1–2), 109–133 (1994).

    Article  MathSciNet  Google Scholar 

  73. V. S. Anashin, “Uniformly Distributed Sequences of p-Adic Integers,” Discrete Math. Appl. 12(6), 527–590 (2002).

    MathSciNet  MATH  Google Scholar 

  74. V. S. Anashin, “Uniformly Distributed Sequences in Computer Algebra, or How to Construct Program Generators of Random Numbers,” J.Math. Sci. 89(4), 1355–1390 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  75. V. S. Anashin, Pseudorandom Number Generation by p-Adic Ergodic Transformations, http://arxiv.org/abs/cs.CR/0401030, http://arxiv.org/abs/cs.CR/0402060.

  76. V. S. Vladimirov, “On the Spectrum of Some Pseudodifferential Operators Over the Field of p-Adic Numbers,” Leningrad Math. J. 2(6), 1261–1278 (1991).

    MathSciNet  Google Scholar 

  77. V. S. Vladimirov, “p-Adic Analysis and p-Adic Quantum Mechanics,” in Symposium on Frontiers of Mathematics (New York, 1988).

  78. V.S. Vladimirov, I. V. Volovich, and E. I. Zelenov, “Spectral Theory in p-Adic Quantum Mechanics and the Theory of Representations,” Math. USSR-Izv. 36(2), 281–309 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  79. V. S. Vladimirov and I. V. Volovich, “p-Adic Schrödinger Equation,” Lett. Math. Phys. 18, 43–53 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  80. A. N. Kochubei, “An Operator of Schrödinger Type Over the p-Adic Number Field,” Theor. Math. Phys. 86(3), 221–228 (1991).

    Article  MathSciNet  Google Scholar 

  81. A. N. Kochubei, “Parabolic Equations Over the Field of p-Adic Numbers,” Math. USSR-Izv. 39(3), 1263–1280 (1992).

    Article  MathSciNet  Google Scholar 

  82. A. Kh. Bikulov, “Investigation of a p-Adic Green Function,” Theor. Math. Phys. 87(3), 600–610 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  83. A. N. Kochubei, “On p-Adic Green Functions,” Theor. Math. Phys. 96(1993) (1), 854–865 (1994).

    MathSciNet  Google Scholar 

  84. V. S. Vladimirov, “On Ramified Characters of the Idele Group of Quadratic Fields of Class Number One,” Proc. Steklov Inst.Math., No. 1 (224), 107–114 (1999).

  85. S. Albeverio and W. Karwowsky, “A RandomWalk on p-Adic Numbers,” in Stochastic Processes-Physics and Geometry II, Proceedings of the Third International Conference (Locarno, Switzerland, 1991) (World Sci., Singapore, 1995), pp. 61–74.

    Google Scholar 

  86. S. Albeverio and W. Karwowsky, “A Random Walk on p-Adics: The Generator and Its Spectrum,” Stoch. Processes Appl. 53, 1–22 (1994).

    Article  MATH  Google Scholar 

  87. K. Yasuda, “Additive Processes on Local Fields,” J.Math. Sci. Univ. Tokyo 3, 629–654 (1996).

    MathSciNet  MATH  Google Scholar 

  88. A. Kh. Bikulov and I. V. Volovich, “p-Adic Brownian Motion,” Izv. Math. 61(3), 537–552 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  89. A. N. Kochubei, “Additive and Multiplicative Fractional Differentiations Over the Field of p-Adic Numbers,” in p-Adic Functional Analysis (Marcel Dekker, New York, 1997), pp. 275–280.

    Google Scholar 

  90. S. V. Kozyrev, “Wavelet Theory as p-Adic Spectral Analysis,” Izv. Math. 66(2), 367–376 (2002); http://xxx.lanl.gov/abs/math-ph/0012019.

    Article  MathSciNet  MATH  Google Scholar 

  91. J. J. Benedetto and R. L. Benedetto, “A Wavelet Theory for Local Fields and Related Groups,” J. Geom. Anal. 14(3), 423–456 (2004).

    MathSciNet  MATH  Google Scholar 

  92. R. L. Benedetto, “Examples of wavelets for Local Fields,” in Proceedings of the AMS Special Session on Wavelets, Frames, and Operator Theory (Baltimore, U.S.A., 2003) (Am. Math. Soc., Providence, R.I., 2004); http://arxiv.org/math.CA/abs/0312038.

    Google Scholar 

  93. V. M. Shelkovich and M. A. Skopina, p-Adic Haar Multiresolution Analysis, http://arxiv.org/abs/0704.0736.

  94. S. Albeverio, S. Evdokimov, and M. Skopina, p-Adic Multiresolution Analysis and Wavelet Frames, http://arxiv.org/abs/0802.1079.

  95. A. Yu. Khrennikov, V. M. Shelkovich, and M. Skopina, p-Adic Refinable Functions and MRA-Based Wavelets, http://arxiv.org/abs/0711.2820.

  96. S. Albeverio and S.V. Kozyrev, Coincidence of the Continuous and Discrete p-Adic Wavelet Transforms, http://arxiv.org/abs/math-ph/0702010.

  97. S. Albeverio and S. V. Kozyrev, Frames of p-Adic Wavelets and Orbits of the Affine Group, http://arxiv.org/abs/0801.4713.

  98. B. S. Kashin and A. A. Saakyan, Orthogonal Series, 2nd ed. (AFTs, Moscow, 1999) [in Russian].

    MATH  Google Scholar 

  99. S. V. Konyagin and I. Shparlinski, Character Sums with Exponential Functions and Their Applications (Cambridge Univ. Press, Cambridge, 1999).

    Book  MATH  Google Scholar 

  100. M.иV. Altaisky, Wavelets: Theory, Applications, Implementation (Universities Press, Hyderabad, India, 2005).

    Google Scholar 

  101. M. V. Altaisky, “p-Adic Wavelet Transform and Quantum Physics,” Proc. Steklov Inst. Math., No. 2 (245), 34–39 (2004).

  102. S. Albeverio, A. Yu. Khrennikov, and V.M. Shelkovich, “Harmonic Analysis in the p-Adic Lizorkin Spaces: Fractional Operators, Pseudo-Differential Equations, p-Adic Wavelets, Tauberian Theorems,” J. Fourier Anal. Appl. 12(4), 393–425 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  103. F. Murtagh, “The Haar Wavelet Transform of a Dendrogram,” J. Classification, 2007 (in press); http://arxiv.org/abs/cs.IR/0608107.

  104. F. Murtagh, Multidimensional Clustering Algorithms (Physica-Verlag, Wurzburg, 1984).

    Google Scholar 

  105. S. V. Kozyrev, “p-Adic Pseudodifferential Operators and p-Adic Wavelets,” Theor. Math. Phys. 138(3), 322–332 (2004); http://arxiv.org/abs/math-ph/0303045.

    Article  MathSciNet  MATH  Google Scholar 

  106. S. V. Kozyrev, “p-Adic Pseudodifferential Operators: Methods and Application,” Proc. Steklov Inst. Math., No. 2 (245), 143–153 (2004).

  107. S. V. Kozyrev, V. Al. Osipov, and V. A. Avetisov, “Nondegenerate Ultrametric Diffusion,” J.Math. Phys. 46, 063302 (2005); http://arxiv.org/abs/cond-mat/0403440.

    Article  MathSciNet  Google Scholar 

  108. S. V. Kozyrev and A. Yu. Khrennikov, “Pseudodifferential Operators on Ultrametric Spaces and Ultrametric Wavelets,” Izv. Math. 69(5), 989–1003 (2005); http://arxiv.org/abs/math-ph/0412062.

    Article  MathSciNet  MATH  Google Scholar 

  109. A. Yu. Khrennikov and S. V. Kozyrev, “Wavelets on Ultrametric Spaces,” Appl. Comput. Harmon. Anal. 19, 61–76 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  110. S. V. Kozyrev, “Wavelets and Spectral Analysis of Ultrametric Pseudodifferential Operators,” Sb. Math. 198(1–2), 97–116 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  111. A. Yu. Khrennikov and S. V. Kozyrev, “Ultrametric Random Field,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9(2), 199–213 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  112. S. Albeverio, T. Hida, J. Potthoff, and L. Streit, “Dirichlet Forms in Terms of White Noise Analysis,” Rev. Mod. Phys., 1, 291–323 (1990).

    MathSciNet  Google Scholar 

  113. I.M. Gelfand and N. Ya. Vilenkin, Generalized Functions (Nauka, Moscow, 1961) [in Russian].

    Google Scholar 

  114. I. I. Gikhman and A. V. Skorokhod, Theory of Random Processes (Nauka, Moscow, 1971–1973), Vols. 1–3 [in Russian].

    Google Scholar 

  115. L. Accardi, A. Frigerio, and J. T. Lewis, “Quantum Stochastic Processes,” Publ. RIMS 18, 97 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  116. T. Hida, Brownian Motion (Springer, New York, 1980; Mir, Moscow, 1987).

    MATH  Google Scholar 

  117. F. Schipp, W. R. Wade, and P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis (Akademiai Kiado, Budapest, 1990).

    MATH  Google Scholar 

  118. B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Walsh Series and Transforms: Theory and Applications (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  119. B. I. Golubov, “On a Modified Strong Dyadic Integral and Derivative,” Sb. Math. 193(3–4), 507–529 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  120. B. I. Golubov, “AModified Dyadic Integral and Derivative of Fractional Order on ℝ+,” Funct. Anal. Appl. 39(2), 135–139 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  121. Yu. A. Farkov, “Orthogonal Wavelets on Locally Compact Abelian Groups,” Funct. Anal. Appl. 31(1997) (4), 294–296 (1998).

    MathSciNet  Google Scholar 

  122. W. C. Lang, “Wavelet Analysis on the Cantor Dyadic Group,” Houston J. Math. 24, 533–544 (1998); Addendum 24, 757–758.

    MathSciNet  MATH  Google Scholar 

  123. M. L. Lapidus and C. He, Generalized Minkowski Content, Spectrum of Fractal Drums, Fractal Strings and the Riemann-Zeta-Function (Am. Math. Soc., Providence, R.I., 1997).

    Google Scholar 

  124. M. L. Lapidus, Fractal Geometry and Number Theory (Birkhäuser, Boston, 1999).

    Google Scholar 

  125. M. L. Lapidus and M. van Frankenhuysen, Fractal Geometry and Number Theory: Fractal Strings and Zeros of Zeta Functions (Birkhäuser, Boston, 2000).

    MATH  Google Scholar 

  126. J. Kigami, Analysis on Fractals (Cambridge Univ. Press, Cambridge, 2001).

    Book  MATH  Google Scholar 

  127. R. S. Strichartz, Differential Equations on Fractals: A Tutorial (Princeton Univ. Press, Princeton, 2006).

    MATH  Google Scholar 

  128. I. V. Volovich, “p-Adic String,” Classical Quantum Gravity 4, L83–L87 (1987).

    Article  MathSciNet  Google Scholar 

  129. I. V. Volovich, “p-Adic Space-Time and String Theory,” Teor.Mat. Fiz. 71, 337–340 (1987).

    MathSciNet  Google Scholar 

  130. I. V. Volovich, “Number Theory As the Ultimate Physical Theory,” Preprint CERN-TH.4781/87 (CERN, Geneva, 1987).

    Google Scholar 

  131. Yu. I. Manin, New Dimensions in Geometry (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  132. Yu. I. Manin, “Reflections on Arithmetical Physics,” in Conformal Invariance and String Theory (Poiana Brasov, Romania, 1987) (Academic, Boston, 1989), 293–303.

    Google Scholar 

  133. V. S. Varadarajan, “Arithmetic Quantum Physics: Why, What, and Whither,” Proc. Steklov Inst. Math., No. 2 (245), 258–265 (2004).

  134. V. S. Vladimirov and I. V. Volovich, “p-Adic Quantum Mechanics,” Soviet Phys. Dokl. 33, 669–670 (1989).

    MathSciNet  Google Scholar 

  135. V. S. Vladimirov and I. V. Volovich, “Application of p-Adic Numbers in Mathematical Physics,” Proc. Steklov Inst. Math., No. 2 (200), 97–109 (1993).

  136. G. S. Djordjević and B. Dragovich, “A p-Adic Harmonic and an Adelic Harmonic Oscillator with a Time-Dependent Frequency,” Theor. Math. Phys. 124(2), 1059–1067 (2000).

    Article  MATH  Google Scholar 

  137. E. I. Zelenov, “p-Adic Quantum Mechanics for p = 2,” Theor. Math. Phys. 80(1989) (2), 848–856 (1990).

    MathSciNet  Google Scholar 

  138. E. I. Zelenov “p-Adic Quantum Mechanics and Coherent States, 1: Weyl Systems,” Theor. Math. Phys. 86(2), 143–151 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  139. E. I. Zelenov, “p-Adic Quantum Mechanics and Coherent States, 2: Oscillator Eigenfunctions,” Theor. Math. Phys. 86(3), 258–265 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  140. E. Yu. Lerner and M.D. Missarov, “Scalar Models of p-Adic Quantum Field Theory, and Dyson Hierarchical Model,” Theor. Math. Phys. 78(2), 177–184 (1989).

    Article  MathSciNet  Google Scholar 

  141. A. Yu. Khrennikov, “Quantum Mechanics Over Non-Archimedean Number Fields,” Theor. Math. Phys. 83(3), 623–632 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  142. A. Yu. Khrennikov, “MathematicalMethods in Non-Archimedean Physics,” Russian Math. Surveys 45(4), 87–125 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  143. A. Yu. Khrennikov, “Real-Non-Archimedean Structure of Space-Time,” Theor. Math. Phys. 86(2), 121–130 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  144. S. Albeverio and A. Khrennikov, “p-Adic Hilbert Space Representation of Quantum Systems with an Infinite Number of Degrees of Freedom,” Int. J. Mod. Phys. 10(13/14), 1665–1673 (1998).

    MathSciNet  Google Scholar 

  145. G. S. Djordjevic and B. Dragovich, “p-Adic Path Integrals for Quadratic Actions,” Mod. Phys. Lett. A 12(20), 1455–1464 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  146. B. Dragovich, “p-Adic Perturbation Series and Adelic Summability,” Phys. Lett. B 256, 392–396 (1991).

    Article  MathSciNet  Google Scholar 

  147. B. Dragovich, “On p-Adic and Adelic Generalization of Quantum Field Theory,” Nucl. Phys. B. Proc. Suppl. 102/103, 150–155 (2001).

    Article  MathSciNet  Google Scholar 

  148. B. Dragovich, “p-Adic and Adelic Quantum Mechanics,” Proc. Steklov Inst. Math., No. 2 (245), 64–77 (2004).

  149. A. Yu. Khrennikov, “p-Adic Quantum Mechanics with p-Adic Valued Functions,” J.Math. Phys. 32, 932–936 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  150. A. Yu. Khrennikov and S. V. Kozyrev, “Wavelets and the Cauchy Problem for the Schrödinger Equation on Analytic Ultrametric Space,” in Proceedings of the Second Conference on Mathematical Modelling of Wave Phenomena (Växjö, Sweden, 2005) (AIP, Melville, 2006), pp. 344–350.

    Google Scholar 

  151. E. Y. Lerner and M. D. Missarov, “p-Adic Feynman String Amplitudes,” Comm. Math. Phys. 121, 35–48 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  152. G. Parisi, “On p-Adic Functional Integrals,” Mod. Phys. Lett. A 4, 369–374 (1988).

    MathSciNet  Google Scholar 

  153. V. S. Varadarajan, “Non-Archimedean Models for Space-Time,” Mod. Phys. Lett. A 16, 387–395 (2001).

    Article  MathSciNet  Google Scholar 

  154. V. S. Vladimirov and I. V. Volovich, “p-Adic Quantum Mechanics,” Comm. Math. Phys. 123, 659–676 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  155. E. I. Zelenov, “p-Adic Path Integrals,” J.Math. Phys. 32(12), 147–152 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  156. E. I. Zelenov, “p-Adic Heisenberg Group and Maslov Index,” Comm. Math. Phys. 155, 489–502 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  157. E. Yu. Lerner and M. D. Missarov, “Fixed Points of Renormalization Group in the Hierarchical Fermionic Model,” J. Stat. Phys. 76, 805–817 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  158. M. D. Missarov, “RG-Invariant Curves in the Fermionic Hierarchical Model,” Theor. Math. Phys. 114(3), 255–265 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  159. M. D. Missarov, “Critical Phenomena in the Fermion Hierarchical Model,” Theor. Math. Phys. 117(1998) (3), 1483–1498 (1999).

    MathSciNet  Google Scholar 

  160. M. D. Missarov, “The Continuum Limit in the Fermionic Hierarchical Model,” Theor. Math. Phys. 118(1), 32–40 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  161. M. D. Missarov, “Symmetry of the Renormalization Group in p-Adic Models,” Proc. Steklov Inst. Math., No. 2 (245), 160–168 (2004).

  162. P. G. O. Freund and M. Olson, “Non-Archimedean Strings,” Phys. Lett. B 199, 186–190 (1987).

    Article  MathSciNet  Google Scholar 

  163. L. Brekke, P.G. O. Freund, M. Olson, and E. Witten, “Non-Archimedian String Dynamics,” Nucl. Phys. B 302, 365–402 (1988).

    Article  MathSciNet  Google Scholar 

  164. P. G. O. Freund and E. Witten, “Adelic String Amplitudes,” Phys. Lett. B 199, 191–194 (1987).

    Article  MathSciNet  Google Scholar 

  165. L. Brekke, P. G. O. Freund, E. Metzler, and M. Olson, “Adelic N-Point Amplitudes,” Phys. Lett. B 216(1–2), 53–58 (1989).

    MathSciNet  Google Scholar 

  166. I. Ya. Aref’eva, B. Dragovich, and I. V. Volovich, “On the Adelic String Amplitudes,” Phys. Lett. B 209(4) (1988), 445–450.

    Article  MathSciNet  Google Scholar 

  167. L. O. Chekhov, “A Note on Multiloop Calculus in p-Adic String Theory,” Mod. Phys. Lett. A 4, 1151–1158 (1989).

    Article  MathSciNet  Google Scholar 

  168. L. O. Chekhov, A. D. Mironov, and A. V. Zabrodin, “Multiloop Calculation in p-Adic String Theory and Bruhat-Tits Trees,” Commun. Math. Phys. 125, 675–711 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  169. A. V. Zabrodin, “Nonarchimedean Strings and Bruhat-Tits Trees,” Comm. Math. Phys. 123, 463–483 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  170. I. Ya. Aref’eva, B. Dragovich, and I. V. Volovich, “Open and Closed p-Adic Strings and Quadratic Extension of Number Fields,” Phys. Lett. B 212, 283–289 (1988).

    Article  MathSciNet  Google Scholar 

  171. I. Ya. Aref’eva, B. Dragovich, and I. V. Volovich, “p-Adic Superstrings,” Phys. Lett. B 214, 339–346 (1988).

    Article  MathSciNet  Google Scholar 

  172. V. S. Vladimirov, “Adelic Formulas for Gamma and Beta Functions in Algebraic Number Fields,” in p-Adic Functional Analysis (Marcel Dekker, New York, 1997), pp. 383–395.

    Google Scholar 

  173. V. S. Vladimirov, “On the Freund-Witten Adelic Formula for Veneziano Amplitudes,” Lett. Math. Phys. 27, 123–131 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  174. V. S. Vladimirov, “Freund-Witten Adelic Formulas for Veneziano and Virasoro-Shapiro Amplitudes,” Russian Math. Surveys 48(6), 1–39 (1993).

    Article  MathSciNet  Google Scholar 

  175. V. S. Vladimirov and T. M. Sapuzhak, “Adelic Formulas for String Amplitudes in Fields of Algebraic Numbers,” Lett. Math. Phys. 37, 233–242 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  176. V. S. Vladimirov, “Adelic Formulas for Gamma and Beta Functions in Algebraic Number Fields,” Dokl. Akad. Nauk 347(1), 11–15 (1996).

    MathSciNet  Google Scholar 

  177. V. S. Vladimirov, “Adelic Formulas for Gamma and Beta Functions of Completions of Algebraic Number Fields and Their Applications to String Amplitudes,” Izv. Math. 60(1), 67–90 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  178. V. S. Vladimirov, “Adelic Formulas for Gamma- and Beta-Functions of Class Number One Quadratic Fields: Applications to 4-Particle String Scattering Amplitudes,” Proc. Steklov Inst. Math., No. 1 (228), 67–80 (2000).

  179. V. S. Vladimirov, “Beta Functions of Local Fields of Characteristic Zero. Applications to String Amplitudes Beta Function Local Fields Characteristic Zero. Application to String Amplitudes,” Izv. Math. 66(1), 41–57 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  180. V. S. Vladimirov, “Adelic Formulas for Four-Particle String and Superstring Tree Amplitudes in One-Class Quadratic Fields,” Proc. Steklov Inst. Math. 245, 3–21 (2004).

    Google Scholar 

  181. P. H. Frampton and Y. Okada, “Effective Scalar Field Theory of p-Adic String,” Phys. Rev. D 37, 3077–3079 (1988).

    Article  MathSciNet  Google Scholar 

  182. V. S. Vladimirov and Ya. I. Volovich, “On a Nonlinear Equation of Dynamics in p-Adic String Theory,” Theor. Math. Phys. 138(3), 297–309 (2004); http://arxiv.org/abs/math-ph/0306018.

    Article  MathSciNet  MATH  Google Scholar 

  183. I. Ya. Aref’eva, “Rolling Tachyon on Non-BPS Branes and p-Adic Strings,” Proc. Steklov Inst. Math., No. 2 (245), 40–47 (2004).

  184. I. Ya. Aref’eva and I. V. Volovich, “Quantum Group Particles and Non-Archimedean Geometry,” Phys. Lett. B 268, 179–193 (1991).

    Article  MathSciNet  Google Scholar 

  185. A. Connes, Noncommutative Geometry (Academic, San Diego, 1994).

    MATH  Google Scholar 

  186. S. V. Kozyrev, p-Adic Representation of the Cuntz Algebra and the Free Coherent States, http://arxiv.org/abs/math-ph/0205029.

  187. S. V. Kozyrev, “An Ultrametric Space of Free Coherent States,” Theor. Math. Phys. 110(2), 265–266 (1997); S. V. Kozyrev, Free Coherent States and p-Adic Numbers, http://xxx.lanl.gov/abs/qalg/9701015.

    Article  MathSciNet  MATH  Google Scholar 

  188. S. V. Kozyrev, “The Space of Free Coherent States Is Isomorphic to Space of Distributions on p-Adic Numbers,” Infin. Dimens.Anal. Quantum Probab. Relat. Top. 1(2), 349–355 (1998); http://xxx.lanl.gov/abs/qalg/9706020.

    Article  MathSciNet  MATH  Google Scholar 

  189. S. V. Kozyrev, “A Rigged Hilbert Space of Free Coherent States, and p-Adic Numbers,” Theor. Math. Phys. 135(2), 642–650 (2003); arXiv: math-ph/0205009.

    Article  MathSciNet  MATH  Google Scholar 

  190. I. Ya. Aref’eva, B. Dragovich, P. Frampton, and I. V. Volovich, “Wave Function of the Universe and p-Adic Gravity,” Mod. Phys. Lett. A 6, 4341–4358 (1991).

    MathSciNet  MATH  Google Scholar 

  191. I. Ya. Aref’eva and P. Frampton, “Beyond Planck Energy to Non-Archimedean Geometry,” Mod. Phys. Lett. A 6, 313–316 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  192. R. Rammal, G. Toulouse, and M. A. Virasoro, “Ultrametricity for Physicists,” Rev. Mod. Phys. 58, 765–821 (1986).

    Article  MathSciNet  Google Scholar 

  193. B. C. Dotsenko, “Physics of the Spin-Glass State,” Physics Uspekhi 36(6), 455–485 (1993).

    Article  Google Scholar 

  194. A. Yu. Grosberg, “Disordered Polymers,” Physics Uspekhi 40(2), 125–158 (1997).

    Article  Google Scholar 

  195. A. Yu. Grosberg and A. R. Hhokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  196. S. F. Edwards and P.W. Anderson, “Theory of Spin Glasses,” J. Phys. F, 5, 965–974 (1975).

    Article  Google Scholar 

  197. G. Parisi, “Toward a Mean Field Theory for Spin Glasses,” Phys. Lett. A 73(3), 203–205 (1979).

    Article  MathSciNet  Google Scholar 

  198. G. Parisi, “Infinite Number of Order Parameters for Spin-Glasses,” Phys. Rev. Lett. 43, 1754–1756 (1979).

    Article  Google Scholar 

  199. G. Parisi and N. Sourlas, “Random Magnetic Fields, Supersymmetry, and Negative Dimensions,” Phys. Rev. Lett. 43, 744–745 (1979).

    Article  Google Scholar 

  200. G. Parisi, “Magnetic Properties of Spin Glasses in a New Mean Field Theory,” J. Phys. A: Math. Gen. 13, 1887–1895 (1980).

    Article  Google Scholar 

  201. G. Parisi, “A Sequence of Approximated Solutions for the S-K Model for Spin Glasses,” J. Phys. A: Math. Gen. 13, L115–L121 (1980).

    Article  Google Scholar 

  202. G. Parisi, “The Order Parameter for Spin Glasses: A Function on the Interval 0-1,” J. Phys. A: Math. Gen. 13, 1102–1112 (1980).

    Google Scholar 

  203. G. Parisi, “Order Parameter for Spin Glasses,” Phys. Rev. Lett. 50(24), 1946–1948 (1983).

    Article  MathSciNet  Google Scholar 

  204. M. Mezard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro, “Nature of the Spin-Glass Phase,” Phys. Rev. Lett. 52, 1156–1159 (1984).

    Article  Google Scholar 

  205. G. Parisi, Two Spaces Looking for Geometer, http://arxiv.org/cond-mat/0207334.

  206. G. Parisi, Complex Systems: A Physicist’s Viewpoint, http://xxx.lanl.gov/abs/cond-mat/0205297.

  207. G. Parisi, The Physical Meaning of Replica Symmetry Breaking, http://xxx.lanl.gov/abs/condmat/0205387.

  208. V. A. Avetisov, A. H. Bikulov, and S. V. Kozyrev, “Application of p-Adic Analysis to Models of Spontaneous Breaking of the Replica Symmetry,” J. Phys. A: Math. Gen. 32(50), 8785–8791 (1999); http://xxx.lanl.gov/abs/cond-mat/9904360.

    Article  MathSciNet  MATH  Google Scholar 

  209. G. Parisi and N. Sourlas, “p-Adic Numbers and Replica Symmetry Breaking,” Eur. Phys. J. B 14, 535–542 (2000); http://xxx.lanl.gov/abs/cond-mat/9906095.

    Article  MathSciNet  Google Scholar 

  210. S. V. Kozyrev and A. Yu. Khrennikov, “p-Adic Pseudodifferential Operators and Analytic Extension Replica Matrices,” Teor.Mat. Fiz. 144(2), 1166–1170 (2005).

    MathSciNet  MATH  Google Scholar 

  211. D.M. Carlucci and C. De Dominicis, “On the Replica Fourier Transform,” C. R. Acad. Sci. Paris, Ser. IIB: Mech. Phys. Chem. Astr. 325, 527–530 (1997); http://arxiv.org/abs/cond-mat/9709200.

    MATH  Google Scholar 

  212. C. De Dominicis, D.M. Carlucci, and T. Temesvari, “Replica Fourier Transform on Ultrametric Trees and Block-Diagonalizing Multireplica Matrices,” J. Phys. I France 7, 105–115 (1997); arXiv: cond-mat/9703132.

    Article  Google Scholar 

  213. A. Yu. Khrennikov and S. V. Kozyrev, “Replica Symmetry Breaking Related to a General Ultrametric Space, 1: Replica Matrices and Functionals,” Phys. A 359, 222–240 (2006).

    Article  Google Scholar 

  214. A. Yu. Khrennikov and S. V. Kozyrev, “Replica Symmetry Breaking Related to a General Ultrametric Space, 2: RSB Solutions and the n → 0 Limit,” Phys. A 359, 241–266 (2006).

    Article  Google Scholar 

  215. A. Yu. Khrennikov and S. V. Kozyrev, “Replica Symmetry Breaking Related to a General Ultrametric Space, 3: The Case of General Measure,” Phys. A 378(2), 283–298 (2007); http://arxiv.org/abs/condmat/0603694.

    Article  Google Scholar 

  216. H. Yoshino, “Hierarchical Diffusion, Aging and Multifractality,” J. Phys. A 30, 1143–1160 (1997); http://arxiv.org/abs/cond-mat/9604033.

    Article  MathSciNet  MATH  Google Scholar 

  217. A. T. Ogielski and D. L. Stein, “Dynamics on Ultrametric Spaces,” Phys. Rev. Lett. 55(15), 1634–1637 (1985).

    Article  MathSciNet  Google Scholar 

  218. L. Brekke and M. Olson, p-Adic Diffusion and Relaxation in Glasses, Preprint UTTG-16-89 (Univ. of Texas, Austin, 1989); Preprint EFI-89-23 (Univ. of Chicago, Chicago, 1989).

    Google Scholar 

  219. B. A. Huberman and M. Kerszberg, “Ultradiffusion: The Relaxation of Hierarchical Systems,” J. Phys. A: Math. Gen. 18(6), L331–L336 (1985).

    Article  MathSciNet  Google Scholar 

  220. H. Schiessel and A. Blumen, “Hierarchical Analogues to Fractional Relaxation Equations,” J. Phys. A: Math. Gen. 26(19), 5057–5069 (1993).

    Article  Google Scholar 

  221. G. H. Kohler and A. Blumen, “Variance of Random Walks on Cayley Trees: Application to the Trapping Problem,” J. Phys. A: Math. Gen. 23(23), 5611–5624 (1990).

    Article  MathSciNet  Google Scholar 

  222. A. Blumen, J. Klafter, and G. Zumofen, “Relaxation Behaviour in Ultrametric Spaces,” J. Phys. A: Math. Gen. 19(2), L77–L84 (1986).

    Article  MathSciNet  Google Scholar 

  223. G. Kohler and A. Blumen, “Subordination on Ultrametric Spaces,” J. Phys. A: Math.Gen. 20(16), 5627–5633 (1987).

    Article  MathSciNet  Google Scholar 

  224. K. H. Hoffmann and P. Sibani, “Diffusion in Hierarchies,” Phys. Rev. A 38, 4261–4270 (1988).

    Article  MathSciNet  Google Scholar 

  225. R. Metzler, J. Klafter, and J. Jortner, “Hierarchies and Logarithmic Oscillations in the Temporal Relaxation Patterns of Proteins and Other Complex Systems,” Proc. Nat. Acad. Sci. USA 96, 11 085–11 089 (1999).

    Article  Google Scholar 

  226. S. K. Nechaev and O. A. Vasil’ev, “On the Metric Structure of Ultrametric Spaces,” Proc. Steklov Inst. Math., No. 2 (245), 169–188 (2004).

  227. H. Frauenfelder, “Complexity in Proteins,” Nature Struct. Biol. 2(10), 821–823 (1995).

    Article  Google Scholar 

  228. D. Th. Leeson and D. A. Wiersma, “Looking Into the Energy Landscape of Myoglobin,” Nature Struct. Biol. 2(10), 848–851 (1995).

    Article  Google Scholar 

  229. H. Frauenfelder and D. Th. Leeson, “The Energy Landscape in Non-Biological and Biological Molecules,” Nature Struct. Biol. 5, 757–759 (1998).

    Article  Google Scholar 

  230. A. Ansari, J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. T. Iben, T. B. Sauke, E. Shyamsunder, and R. D. Young, “Protein States and Proteinquakes,” Proc. Natl. Acad. Sci. USA. 82, 5000–5004 (1985).

    Article  Google Scholar 

  231. I. E. T. Iben, D. Braunstein, W. Doster, H. Frauenfelder, M. K. Hong, J. B. Johnson, S. Luck, P. Ormos, A. Schulte, P. J. Steinbach, A. H. Xie, and R. D. Young, “Glassy Behavior of a Protein,” Phys. Rev. Lett. 62, 1916–1919 (1989).

    Article  Google Scholar 

  232. D. J. Wales, “A Microscopic Basis for the Global Appearance of Energy Landscapes,” Science 293, 2067–2070 (2001).

    Article  Google Scholar 

  233. Ch. L. Brooks III, J. N. Onuchic, and D. J. Wales, “Taking a Walk on a Landscape,” Science 293, 612–613 (2001).

    Article  Google Scholar 

  234. K. V. Shaitan, N. K. Balabaev, A. S. Lemak, et al., “Molecular Dynamics of Oligopeptides, 1: Using Long Trajectories and High Temperatures to Determine the Statistical Weight of Conformation Substates,” Biofizika 42(1), 47–53 (1997).

    Google Scholar 

  235. K. V. Shaitan, M. D. Ermolaeva, N. K. Balabaev, et al., “Molecular Dynamics of Oligopeptides, 2: Correlation Functions of Internal Degrees of Freedom for Modified Dipeptides,” Biofizika 42(3), 558–566 (1997).

    Google Scholar 

  236. K. V. Shaitan, M. D. Ermolaeva, and S. S. Saraikin, “Molecular Dynamics of Oligopeptides, 3: Charts of Free Energy Levels of Modified Dipeptides and Dynamic Correlations in Amino Acid Residues,” Biofizika 44(1), 18–21 (1999).

    Google Scholar 

  237. F. H. Stillinger and T. A. Weber, “Hidden Structure in Liquids,” Phys. Rev. A 25, 978–989 (1982).

    Article  Google Scholar 

  238. F. H. Stillinger and T. A. Weber, “Packing Structures and Transitions in Liquids and Solids,” Science 225, 983–989 (1984).

    Article  Google Scholar 

  239. O. M. Becker and M. Karplus, “The Topology of Multidimensional Protein Energy Surfaces: Theory and Application to Peptide Structure and Kinetics,” J. Chem.Phys. 106, 1495–1517 (1997).

    Article  Google Scholar 

  240. S. V. Krivov and M. Karplus, “Hidden Complexity of Free Energy Surfaces for Peptide (Protein) Folding,” PNAS 101(41), 14 766–14 770 (2004).

    Article  Google Scholar 

  241. V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, and V. A. Osipov, “p-Adic Models of Ultrametric Diffusion Constrained by Hierarchical Energy Landscapes,” J. Phys. A: Math. Gen. 35(2), 177–189 (2002); http://xxx.lanl.gov/abs/cond-mat/0106506.

    Article  MathSciNet  MATH  Google Scholar 

  242. V. A. Avetisov, A. Kh. Bikulov, and V. A. Osipov, “p-AdicModels of Ultrametric Diffusion in the Conformational Dynamics of Macromolecules,” Proc. Steklov Inst.Math., No. 2 (245), 48–57 (2004).

  243. V. A. Avetisov, A. Kh. Bikulov, and V. A. Osipov, “p-Adic Description of Characteristic Relaxation in Complex Systems,” J. Phys. A: Math. Gen. 36(15), 4239–4246 (2003); http://arxiv.org/abs/condmat/0210447.

    Article  MathSciNet  MATH  Google Scholar 

  244. S. Fischenko and E. Zelenov, “p-Adic Models of Turbulence,” in p-Adic Mathematical Physics, the Second International Conference (AIP, Melville, 2006), pp. 174–191.

    Google Scholar 

  245. R. Swanson, “A Unifying Concept for the Amino Acid Code,” Bull. Math. Biol. 46(2), 187–203 (1984).

    MathSciNet  MATH  Google Scholar 

  246. M. A. Jimenez-Montano, C. R. de la Mora-Basanez, and Th. Pöshel, “The Hypercube Structure of the Genetic Code Explains Conservative and Non-Conservative Aminoacid Substitutions in Vivo and in Vitro,” BioSystems 39, 117–125 (1996).

    Article  Google Scholar 

  247. M. Sjöstrom and S. Wold, “A Multivariate Study of the Relationship between the Genetic Code and the Physical-Chemical Properties of Amino Acids,” J. Molec. Evolut. 22, 272–277 (1985).

    Article  Google Scholar 

  248. L. Frappat, P. Sorba, and A. Sciarrino, “A Crystal Base for the Genetic Code,” Phys. Lett. A 250, 214–221 (1998); http://arxiv.org/abs/physics/9801027.

    Article  Google Scholar 

  249. L. Frappat, A. Sciarrino, and P. Sorba, “Crystalizing the Genetic Code,” J. Biol. Phys. 27, 1–38 (2001); http://arxiv.org/abs/physics/0003037.

    Article  Google Scholar 

  250. B. Dragovich and A. Dragovich, A p-Adic Model of DNA Sequence and Genetic Code, http://arxiv.org/abs/q-bio.GN/0607018.

  251. A. Yu. Khrennikov and S. V. Kozyrev, “Genetic Code on the Dyadic Plane,” Phys. A 381, 265–272 (2007); http://arxiv.org/abs/q-bio.QM/0701007.

    Article  Google Scholar 

  252. I. Ya. Novikov and S. B. Stechkin, “Basic Constructions of Wavelets,” Fund. Prikl. Mat. 3(4), 999–1028 (1997).

    MathSciNet  MATH  Google Scholar 

  253. I. Ya. Novikov and S. B. Stechkin, “Fundamentals of Wavelet Theory,” Russian Math. Surveys 53(6), 1159–1231 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  254. N.M. Astaf’eva, “Wavelet-Analysis: Basic Theory and Application Examples,” Usp. Fiz. Nauk 166, 1145–1170 (1996).

    Article  Google Scholar 

  255. G. Beylkin, R. Coifman, and V. Rokhlin, “Fast Wavelet Transforms and Numerical Algorithms, 1,” Comm. Pure Appl.Math. 44(2), 141–183 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  256. S. V. Kozyrev, “Toward an Ultrametric Theory of Turbulence,” Theor. Math. Phys. 157(3), 1713–1722 (2008); http://arxiv.org/abs/0803.2719.

    Article  MathSciNet  MATH  Google Scholar 

  257. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  258. H. H. Schaefer, Topological Vector Spaces (Springer, New York, 1999; Mir, Moscow, 1971).

    MATH  Google Scholar 

  259. Yu. L. Dalecky and S. V. Fomin, Measures and Differential Equations in Infinite Dimensional Spaces (Kluwer Academic, Dordrecht, 1991).

    Google Scholar 

  260. O. G. Smolyanov, Analysis on Topological Vector Spaces and Its Applications (Mosk. Gos. Univ., Moscow, 1979) [in Russian].

    Google Scholar 

  261. S. V. Kozyrev and A. Yu. Khrennikov, “Localization if Space for a Free Particle in Ultrametric Quantum Mechanics,” DokladyMath. 74(3), 906–909 (2006).

    MathSciNet  MATH  Google Scholar 

  262. E. B. Gledzer, F. V. Dolzhanskii, and A. M. Obukhov, Systems of Hydrodynamic Type and Their Application (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  263. P. G. Frik, Turbulence: Model and Approaches (Permskii Gos. Tekhn. Univ., Perm’, 1998) [in Russian].

    Google Scholar 

  264. F. H. Stillinger, “Relaxation Behavior in Atomic and Molecular Glasses,” Phys. Rev. B 41, 2409–2416 (1990).

    Article  Google Scholar 

  265. L. Brekke and P. G. O. Freund, “p-Adic Numbers in Physics,” Phys. Rep. 233(1), 1–66 (1993).

    Article  MathSciNet  Google Scholar 

  266. V. I. Gol’danskii, Yu. F. Krupyanskii, K. V. Shaitan, and A. B. Rubin, “Studying the Dynamics of Proteins by the Mössbauer Spectroscopy Method,” Biofizika 3, 761–774 (1987).

    Google Scholar 

  267. V. A. Avetisov and A. Kh. Bikulov, Are Proteins Ultrametric? http://arxiv.org/abs/0804.4551.

  268. S. V. Kozyrev, “Ultrametric Dynamics As a Model of Interbasin Kinetics,” Izv. Nats. Akad. Nauk Armenii. Mat. 41(5), 28–38 (2006).

    MathSciNet  Google Scholar 

  269. Molecular Biology of the Gene, Ed. by J. D. Watson, T. A. Baker, S. P. Bell, A. Gann, M. Levine, and R. Losick, 5th ed. (Benjamin/Cummings, New York, 2003).

    Google Scholar 

  270. A. V. Finkel’shtein and O. B. Ptitsyn, Physics of Protein (Knizhnyi Dom “Universitet,” Moscow, 2002) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Kozyrev, 2008, published in Sovremennye Problemy Matematiki, 2008, Vol. 12, pp. 5–168.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozyrev, S.V. Methods and applications of ultrametric and p-adic analysis: From wavelet theory to biophysics. Proc. Steklov Inst. Math. 274 (Suppl 1), 1–84 (2011). https://doi.org/10.1134/S0081543811070017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543811070017

Keywords

Navigation