Skip to main content
Log in

On Extremal Properties of the Boundary Points of Reachable Sets for Control Systems with Integral Constraints

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

It is well known that every control that steers the trajectory of a control system to the boundary of the reachable set satisfies the Pontryagin maximum principle. This fact is valid for systems with pointwise constraints on the control. We consider a system with quadratic integral constraints on the control. The system is nonlinear in the state variables and linear in the control. It is shown that any admissible control that steers the system to the boundary of its reachable set is a local solution of some optimal control problem with quadratic integral functional if the corresponding linearized system is completely controllable. The proof of this fact is based on the Graves theorem on covering mappings. This implies the maximum principle for the controls that steer the trajectories to the boundary of the reachable set. We also discuss an algorithm for constructing the reachable set based on the maximum principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. N. Krasovskii, Theory of Motion Control (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  2. A. B. Kurzhanskii, Control and Observation under Uncertainty (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  3. A. I. Subbotin and V. N. Ushakov, “Alternative for an encounter–evasion differential game with integral constraints on the players’ controls,” J. Appl. Math. Mech. 39 (3), 367–375 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. I. Ukhobotov, “On a class of differential games with an integral constraint,” J. Appl. Math. Mech. 41 (5), 838–844 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. N. Ushakov, “Extremal strategies in differential games with integral constraints,” J. Appl. Math. Mech. 36 (1), 12–19 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. T. Polyak, “Convexity of the reachable set of nonlinear systems under L2 bounded controls,” Dyn. Contin. Discrete Impuls. Syst., Ser. A: Math. Anal. 11, 255–267 (2004).

    MathSciNet  MATH  Google Scholar 

  7. N. Huseyin and A. Huseyin, “Compactness of the set of trajectories of the controllable system described by an affine integral equation,” Appl. Math. Comput. 219, 8416–8424 (2013). doi 10.1016/j.amc.2013.03.005

    MathSciNet  MATH  Google Scholar 

  8. Kh. G. Guseinov and A. S. Nazlipinar, “Attainable sets of the control system with limited resources,” Trudy Inst. Mat. Mekh. UrO RAN 16 (5), 261–268 (2010).

    Google Scholar 

  9. K. G. Guseinov, O. Ozer, E. Akyar, and V. N. Ushakov, “The approximation of reachable sets of control systems with integral constraint on controls,” Nonlinear Diff. Equat. Appl. NoDEA 14 (1–2), 57–73 (2007). doi 10.1007/s00030-006-4036-6

    Article  MathSciNet  MATH  Google Scholar 

  10. A. B. Kurzhanskii and I. Ya. Pishchulina, “Minimax filtering in the case of quadratic constraints. I–III,” Differents. Uravn. 12 (8), 1434–1446; 12 (9), 1568–1579; 12 (12), 2149–2158 (1976).

    MathSciNet  Google Scholar 

  11. B. I. Anan’ev, “Correction of motion under communication constraints,” Autom. Remote Control 71 (3), 367–378 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. I. Gusev, “On optimal control problem for the bundle of trajectories of uncertain system,” in Large-Scale Scientific Computing (Springer, Berlin, 2010), Ser. Lecture Notes in Computer Sciences 5910, pp. 286–293. doi 10.1007/978-3-642-12535-5 33

    Chapter  Google Scholar 

  13. N. N. Subbotina, E. A. Kolpakova, T. B. Tokmantsev, and L. G. Shagalova, The Method of Characteristics for Hamilton–Jacobi–Bellman Equations (Izd. UrO RAN, Yekaterinburg, 2013) [in Russian].

    Google Scholar 

  14. E. B. Lee and L. Markus, Foundations of Optimal Control Theory (Wiley, New York, 1967; Nauka, Moscow, 1972).

    MATH  Google Scholar 

  15. F. P. Vasil’ev, Optimization Methods (Faktorial, Moscow, 2002) [in Russian].

    Google Scholar 

  16. A. D. Ioffe, “Metric regularity and subdifferential calculus,” Russ. Math. Surv. 55 (3), 501–558 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Beckenbach and R. Bellman, An Introduction to Inequalities (New York, Random House, 1961; Mir, Moscow, 1965).

    MATH  Google Scholar 

  18. A. V. Arutyunov, G. G. Magaril-Il’yaev, and V. M. Tikhomirov, Pontryagin Maximum Principle: Proofs and Applications (Faktorial, Moscow, 2006) [in Russian].

    Google Scholar 

  19. E. J. Cockayne and G. W. C. Hall, “Plane motion of a particle subject to curvature constraints,” SIAM J. Control 13 (1), 197–220 (1975). doi 10.1137/0313012

    Article  MathSciNet  MATH  Google Scholar 

  20. V. S. Patsko, S. G. Pyatko, and A. A. Fedotov, “Three-dimensional reachability set for a nonlinear control system,” J. Comput. Syst. Sci. Int. 42 (3), 320–328 (2003).

    MathSciNet  MATH  Google Scholar 

  21. M. I. Gusev and I. V. Zykov, “A numerical method for solving linear–quadratic control problems with constraints,” Ural Math. J. 2 (2), 108–116 (2016). doi 10.15826/umj.2016.2.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Gusev.

Additional information

Original Russian Text © M.I.Gusev, I.V. Zykov, 2017, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Vol. 23, No. 1, pp. 103–115.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, M.I., Zykov, I.V. On Extremal Properties of the Boundary Points of Reachable Sets for Control Systems with Integral Constraints. Proc. Steklov Inst. Math. 300 (Suppl 1), 114–125 (2018). https://doi.org/10.1134/S0081543818020116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818020116

Keywords

Navigation