Skip to main content
Log in

Comparison between gene expression programming and traditional models for estimating evapotranspiration under hyper arid Conditions

  • Interaction between Continental Waters and the Environment
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Gene Expression Programming (GEP) was used to develop new mathematical equations for estimating daily reference evapotranspiration (ET ref) for the Kingdom of Saudi Arabia. The daily climatic variables were collected by 13 meteorological stations from 1980 to 2010. The GEP models were trained on 65% of the climatic data and tested using the remaining 35%. The generalised Penman-Monteith model was used as a reference target for evapotranspiration (ET) values, with h c varies from 5 to 105 cm with increment of a centimetre. Eight GEP models have been compared with four locally calibrated traditional models (Hargreaves-Samani, Irmak, Jensen-Haise and Kimberly-Penman). The results showed that the statistical performance criteria values such as determination coefficients (R 2) ranged from as low as 64.4% for GEP-MOD1, where the only parameters included (maximum, minimum, and mean temperature and crop height), to as high as 95.5% for GEP-MOD8 with which all climatic parameters included (maximum, minimum and mean temperature; maximum, minimum and mean humidity; solar radiation; wind speed; and crop height). Moreover, an interesting founded result is that the solar radiation has almost no effect on ET ref under the hyper arid conditions. In contrast, the wind speed and plant height have a great positive impact in increasing the accuracy of calculating ET ref. Furthermore, eight GEP models have obtained better results than the locally calibrated traditional ET ref equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazba, A.A., Estimating palm water requirements using Penman–Monteith mathematical model, J. King Saud Univ., 2004, Vol. 16, No. 2, pp. 137–152.

    Google Scholar 

  2. Alazba, A.A., Comparison of the ASCE standardized and other Penman Monteith type equations under hyper-arid area, ASABE Annual Meeting, Michigan: Am. Soc. of Ag. Biol. Eng., St. Joseph, 2004.

    Google Scholar 

  3. Alazba, A., Mattar, M.A., El-Nesr, M.N., and Amin, M.T., Field assessment of friction head loss and friction correction factor equations, J. Irrig. Drain. Eng., ASCE, 2012, Vol. 138, No. 2, pp.166–176.

    Google Scholar 

  4. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M., Crop evapotranspiration guidelines for computing crop water requirements, FAO Irrigation and Drainage, Rome, 1998, No. 56.

  5. Aytek, A. and Kii, O., Genetic programming approach to suspended sediment modelling, J. Hydrol., 2008, Vol. 351, No. 3–4, pp. 288–298.

    Article  Google Scholar 

  6. Azamathulla, H.Md., Gene-expression programming to predict friction factor for Southern Italian Rivers, Neural Comput. Appl., 2012, doi: 10.1007/s00521–0121091–2.

    Google Scholar 

  7. Azamathulla, H.Md. and Ahmad, Z., Gene-expression programming for transverse mixing coefficient, J. Hydrol., 2012, Vol. 434–435, pp. 142–148.

    Article  Google Scholar 

  8. Azamathulla, H.Md., Ghani, A.A., Leow, C.S., Chang, K.C., and Zakaria, N.A, Gene-expression programming for the development of a stage-discharge curve of the Pahang River, Wat. Res. Manag., 2011, Vol. 25, pp. 2901–2916.

    Article  Google Scholar 

  9. Dai, X., Shi, H., Li, Y., Ouyang, Z., and Huo, Z., Artificial neural network models for estimating regional reference evapotranspiration based on climate factors, Hydrol. Process., 2009, Vol. 23, pp. 442–450.

    Article  Google Scholar 

  10. Fernando, A.K., Shamseldin, A.Y., and Abrahart, R.J., Use of gene expression programming for multimodel combination of Rainfall-Runoff models, J. Hydrol. Eng., 2012, Vol. 17, No. 9, pp. 975–985.

    Article  Google Scholar 

  11. Ferreira, C., Gene Expression Programming in Problem Solving, 6th Online World Conference on Soft Computing in Industrial Applications, 2001.

    Google Scholar 

  12. Ferreira, C., Gene expression programming: a new adaptive algorithm for solving problems, Complex Syst., 2001, Vol. 13, No. 2, pp. 87–129.

    Google Scholar 

  13. Ferreira, C., Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, Germany: Springer-Verlag, 2006.

    Google Scholar 

  14. Gandomi, A.H., Babanajad, S.K., Alavi, A.H., and Farnam, Y., Novel approach to strength modeling of concrete under triaxial compression, J. Mater. Civ. Eng., 2012, Vol. 24, No. 9, pp. 1132–1143.

    Article  Google Scholar 

  15. Gavilan, P., Berengena, J., and Allen, R.G., Measuring versus estimating net radiation and soil heat flux: impact on Penman–Monteith reference ET estimates in semiarid regions, Agr. Wat. Manag., 2007, Vol. 89, pp. 275–286.

    Article  Google Scholar 

  16. Gavilan, P., Lorite, I.J., Tornero, S., and Berengena, J., Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment, Agr. Wat. Manag., 2006, Vol. 81, pp. 257–281.

    Article  Google Scholar 

  17. Ghani, A.A. and Azamathulla, H.Md., Gene-expression programming for sediment transport in Sewer Pipe Systems, J. Pipeline Syst. Eng. Pract., 2011, Vol. 2, No. 3, pp. 102–106.

    Article  Google Scholar 

  18. Guven, A. and Aytek, A., A new approach for stage-discharge relationship: gene-expression programming, J. Hydrol. Eng., 2009, Vol. 14, No. 8, pp. 812–820.

    Article  Google Scholar 

  19. Hupet, F. and Vanclooster, M., Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration, J. Hydrol., Vol. 243, pp. 192–204.

  20. Irmak, S., Irmak, A., Allen, R.G., and Jones, J.W., Solar and net radiation based equations to estimate reference evapotranspiration in humid climates, J. Irrig. Drain. Eng., ASCE, 2003, Vol. 129, No. 5, pp. 336–347.

    Article  Google Scholar 

  21. Jain, S.K., Nayak, P.C., and Sudhir, K.P., Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation, Hydrol. Process., 2008, Vol. 22, No. 13, pp. 2225–2234

    Article  Google Scholar 

  22. Kisi, O. and Ozturk, O., Adaptive neuro-fuzzy computing technique for evapotranspiration estimation, J. Irrig. Drain. Eng., ASCE, 2007, Vol. 133, No. 4, pp. 368–379.

    Article  Google Scholar 

  23. Kisi, O. and Guven, A., Evapotranspiration modeling using linear genetic programming technique, J. Irrig. Drain Eng., 2010, Vol. 136, No. 10, pp. 715–723.

    Article  Google Scholar 

  24. Kumar, R., Jat, M.K., and Shankar, V., Methods to estimate irrigated reference crop evapotranspiration— a review, Water Science Technology, IWA Publishing, 2012, Vol. 66, No. 3, pp. 525–535.

    Article  Google Scholar 

  25. Kumar, M., Raghuwanshi, N.S., Singh, R., Wallender, W.W., and Pruitt, W.O., Estimating evapotranspiration using artificial neural network, J. Irrig. Drain. Eng., ASCE, 2002, Vol. 128, No. 4, pp. 224–233.

    Article  Google Scholar 

  26. Landeras, G., Barredo, A.O., and Lopez, J.J., Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain), Agr. Wat. Manag., 2008, Vol. 95, pp. 553–565.

    Article  Google Scholar 

  27. Legates, D.R. and McCabe, J., Evaluating the use of “goodness-of fit” measures in hydrologic and hydroclimatic model validation, Wat. Resour. Res., 1999, Vol. 35, No. 1, pp. 233–241.

    Article  Google Scholar 

  28. Mollahasani, A., Alavi, A.H., and Gandomi, A.H., Empirical modeling of plate load test moduli of soil via gene expression programming, Comput. Geotechnics, 2011, Vol. 38, pp. 281–286.

    Article  Google Scholar 

  29. Naoum, S. and Tsanis, K.I., Hydroinformatics in evapotranspiration estimation, Environ. Modelling Software, 2003, Vol. 18, pp. 261–271.

    Article  Google Scholar 

  30. Nazari, A., Prediction performance of PEM fuel cells by gene expression programming, Int. J. Hydrogen Energy, 2010, Vol. 37, pp. 18972–18980.

    Article  Google Scholar 

  31. Parasuraman, K., Elshorbagy, A., and Carey, S., Modeling the dynamics of the evapotranspiration process using genetic programming, Hydrolog. Sci. J., 2007, Vol. 52, No. 3, pp. 563–578.

    Article  Google Scholar 

  32. Rivas, R. and Caselles, V., A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data, Remote Sensing Environ., 2004, Vol. 93, pp. 68–76.

    Article  Google Scholar 

  33. Samadianfard, S., Gene expression programming analysis of implicit Colebrook–White equation in turbulent flow friction factor calculation, J. Petroleum Sci. Eng., 2012, Vol. 92–93, pp. 48–55.

    Article  Google Scholar 

  34. Saridemir, M., Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash, Construction Building Mater., 2010, Vol. 24, pp. 1911–1919.

    Article  Google Scholar 

  35. Seckin, G., Yilmaz, T., Guven, A., Yuceer, A., Basibuyuk, M., and Ersu, C.B., Modeling the performance of up flow anaerobic filters treating paper-mill wastewater using gene-expression programming, Ecol. Eng., 2011, Vol. 37, pp. 523–528.

    Article  Google Scholar 

  36. Shiri, J., Kisi, O., Landeras, G., Lopez, J.J., Nazemi, A.H., and Stuyt, L., Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain), J. Hydrology, 2012, Vol. 414–415, pp. 302–316.

    Article  Google Scholar 

  37. Steve, R.G., Kirkham, M.B., and Brent, E.C., Root uptake and transpiration: from measurements and models to sustainable irrigation, J. Agr. Wat. Manag., 2006, Vol. 86, pp. 165–176.

    Article  Google Scholar 

  38. Trajkovic, S., Testing hourly reference evapotranspiration approaches using lysimeter measurements in a semiarid climate, Hydrology Res., 2010, Vol. 41, No. 1, pp. 38–49.

    Article  Google Scholar 

  39. Trajkovic, S. and Kolakovic, S., Comparison of simplified pan-based equations for estimating reference evapotranspiration, J. Irrig. Drain. Eng., 2010, Vol. 136, No. 2, pp. 137–140.

    Article  Google Scholar 

  40. Traore, S. and Guven, A., Regional-specific numerical models of evapotranspiration using gene-expression programming interface in Sahel, Wat. Res. Manag., 2012, Vol. 26, pp. 4367–4380.

    Article  Google Scholar 

  41. Traore, S., Wang, Y., and Kerh, T., Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian Zone, Agr. Wat. Manag., 2010, Vol. 97, pp. 707–714.

    Article  Google Scholar 

  42. Zahiri, A. and Eghbali, P., Gene expression programming for prediction of flow discharge in compound channels, J. Civil Eng. Urbanism, 2012, Vol. 2, No. 4, pp. 164–169.

    Google Scholar 

  43. Zanetti, S.S., Sousa, E.F., Oliveira, V.P.S., Almeida, F.T., and Bernardo, S., Estimating evapotranspiration using artificial neural network and minimum climatological data, J. Irrig. Drain. Eng., ASCE, 2007, Vol. 133, No. 2, pp. 83–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yassin, M.A., Alazba, A.A. & Mattar, M.A. Comparison between gene expression programming and traditional models for estimating evapotranspiration under hyper arid Conditions. Water Resour 43, 412–427 (2016). https://doi.org/10.1134/S0097807816020172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807816020172

Keywords

Navigation