Skip to main content
Log in

Numerical modeling of Saltwater Wedge under Intruding and Receding Conditions (Case Study: Kahriz Aquifer, Lake Urmia)

  • DEVELOPMENT OF METHODS OF HYDROPHYSICAL HYDRODYNAMICS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The complexity of saltwater intrusion issues caused, they cannot be solved analytically, so numerical methods can be useful tools for simulation and prediction of saltwater intrusion. In this study, CTRAN/W as a finite element-based model, and SEAWAT as a finite-difference model were employed to simulate the behavior of the saltwater wedge in three states including steady and transient flow. Results of numerical modeling were compared with observed published data and the precision of the models evaluated using various statistical parameters. Based on the results, both models capable to simulate saltwater intrusion with high precision. Furthermore, Kahriz aquifer located at the northwest of Lake Urmia has been modeled underground water level oscillations. The results of this part showed that just 4 m dropping of groundwater level leads to the intruding of saltwater two times in comparison to the reference level. The finding revealed that the time to reach the steady-state conditions for receding saltwater wedge is 60% of that for intruding saltwater wedge after rapid water level changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abdelaty, I.M., Abd-Elhamid, H.F., Fahmy, M.R., and Abdelaal, G.M., Investigation of some potential parameters and its impacts on saltwater intrusion in Nile Delta aquifer, JES. J. Eng. Sci., 2014, vol. 42, no. 4, pp. 931−955.

    Google Scholar 

  2. Amirataee, B. and Zeinalzadeh, K., Trends analysis of quantitative and qualitative changes in groundwater with considering the autocorrelation coefficients in west of Lake Urmia, Iran, Environ. Earth Sci., 2016, vol.75, no. 5, pp. 371−379.

    Article  Google Scholar 

  3. Custodio, C.H. and Bruggeman, G.A., Groundwater problems in coastal aquifers, Studies and Rep. Hydrol., 1987, UNESCO, Paris, vol. 45, pp. 1−576.

    Google Scholar 

  4. Fetter, C.W., Jr., 1972, Position of the saline water interface beneath oceanic islands, Water Resour. Res., 1972, vol. 8, no. 5, pp. 1307−1315.

    Article  Google Scholar 

  5. Frind, E.O., Simulation of long-term transient density-dependent transport in groundwater, J. Adv. Water Res., 1982, vol. 5, no. 6, pp. 73−88.

    Article  Google Scholar 

  6. Gad, M.I. and Khalaf, S., Management of groundwater resources in arid areas case study: North Sinai, Egypt, Water Resour., 2015, vol. 42, no. 4, pp. 535−552.

    Article  Google Scholar 

  7. Galeati, G., Gamboled, G., and Neuman, S.P., Coupled and partially coupled Eulerian-Lagrangian model of freshwater–seawater mixing, 1992, J. Water Resour. Res., vol. 28, no. 1, pp. 149−165

    Article  Google Scholar 

  8. Glover, R.E., Ground-water movement, US Bureau of Reclamation Engineering Monograph Series, 1964, pp. 31−34.

    Google Scholar 

  9. Goswami, R.R. and Clement T.P., Laboratory-scale investigation of saltwater intrusion dynamics, Water Resour. Res., 2007, vol. 43, no. 4.

  10. Huykorn, P.S., Anderson, P.F., Mercer, J.W., and White, Jr., Saltwater intrusion in aquifers: Development and testing of a three-dimensional finite-element model, J. Water Resour. Res., 1987, vol. 23, no. 2, pp. 293−312.

    Article  Google Scholar 

  11. Illangasekare, T., Tyler, S.W., Clement, T.P., Villholth, K.G., Perera, A.P.G.R.L., Obeysekera, J., Gunatilaka, A., Panabokke, C.R., Hyndman, D.W., Cunningham, K.J., and Kaluarachchi, J.J., Impacts of the 2004 tsunami on groundwater resources in Sri Lanka, J. Water Resour. Res, 2006, vol. 42, no. 5.

  12. Javadzadeh, H., Ataie-Ashtiani, B., Hosseini, S.M., and Simmons, C.T., Interaction of lake–groundwater levels using cross-correlation analysis: A case study of Lake Urmia Basin, Iran, Sci. Total Environ., 2020, vol. 729, pp. 138822−138835.

    Article  Google Scholar 

  13. Johannsen, K., Kinzelbach, W., Oswald, S., and Wittum, G., The saltpool benchmark problem–numerical simulation of saltwater upconing in a porous medium, Adv. Water Resour., 2002, vol. 25, no. 3, pp. 335−348.

    Article  Google Scholar 

  14. Konz, M., Younes, A., Ackerer, P., Fahs, M., Huggenberger, P., and Zechner, E., Variable-density flow in heterogeneous porous media−Laboratory experiments and numerical simulations, J. Contam. Hydrol., 2009, vol. 108, nos. 3−4, pp. 168−175.

    Article  Google Scholar 

  15. Kolar, R.L., Kibbey, T.C.G., Szpilka, C.M., Dresback, K.M., Tromble, E.M., Toohey, I.P., Hoggan, J.L., and Atkinson, J.H., Process-oriented tests for validation of baroclinic shallow water models: The lock-exchange problem, Ocean Modelling, 2009, vol. 28, nos. 1−3, pp. 137−152.

    Article  Google Scholar 

  16. Krahn, J., Seepage modeling with SEEP/W: An engineering methodology, Alberta, Canada: GEO-SLOPE International Ltd. Calgary, 2004.

    Google Scholar 

  17. Kumar, S.S., Barma, S.D., and Amai, M., Simulation of coastal aquifer using mSim toolbox and COMSOL Multiphysics, J. Earth Syst. Sci., 2020, vol. 129, no. 1, pp. 1−15.

    Article  Google Scholar 

  18. Lu, W., Yang, Q., Martín, J.O.R.D.I., and Juncosa, R., Numerical modelling of seawater intrusion in Shenzhen (China) using a 3D density-dependent model including tidal effects, J. Earth Syst. Sci., 2013, vol. 122, no. 2, pp. 451−465.

    Article  Google Scholar 

  19. Luyun R., Jr., Momii, K., and Nakagawa, K., Laboratory-scale saltwater behavior due to subsurface cutoff wall, J. Hydrol., 2009, vol. 377, nos. 3−4, pp. 227−236.

    Article  Google Scholar 

  20. Mikhailova, M.V., Processes of seawater intrusion into river mouths, Water Res., 2013, vol. 40, no. 5, pp. 483−498.

    Article  Google Scholar 

  21. Morad, N.A., Masoud, M.H., and Moghith, S.A., Hydrologic factors controlling groundwater salinity in northwestern coastal zone, Egypt, J. Earth Syst. Sci., 2014, vol. 123, no. 7, pp. 1567−1578.

    Article  Google Scholar 

  22. Motallebian, M., Ahmadi, H., Raoof, A., and Cartwright, N., An alternative approach to control saltwater intrusion in coastal aquifers using a freshwater surface recharge canal, J. Contam. Hydrol., 2019, vol. 222, pp. 56−64.

    Article  Google Scholar 

  23. Noorabadi, S., Nazemi, A.H., Sadraddini, A.A., and Delirhasannia, R., Laboratory investigation of water extraction effects on saltwater wedge displacement, Global J. Environ. Sci. Manage., 2017, vol. 3, no. 1, pp. 21−32.

    Google Scholar 

  24. Sithara, S., Pramada, S.K., and Thampi, S.G., Impact of projected climate change on seawater intrusion on a regional coastal aquifer, J. Earth Syst. Sci., 2020, vol. 129, no. 1, pp. 1−15.

    Article  Google Scholar 

  25. Strack, O.D.L., A single-potential solution for regional interface problems in coastal aquifers, Water Resour. Res., 1976, vol. 12, no. 6, pp. 1165−1174.

    Article  Google Scholar 

  26. Werner, A.D., Bakker, M., Post, V.E., Vandenbohe-de, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T., and Barry, D.A., Seawater intrusion processes, investigation and management: recent advances and future challenges, Adv. Water Resour., 2013, vol. 51, pp. 3−26.

    Article  Google Scholar 

  27. Van Lopik, J.H., Hartog, N., Zaadnoordijk, W.J., Cirkel, D.G., and Raoof, A., Salinization in a stratified aquifer induced by heat transfer from well casings, Adv. Water Resour., 2015, vol. 86, pp. 32−45.

    Article  Google Scholar 

  28. Xue, Y., Xie, C., Wu, J., Liu, P., Wang, J., and Jiang, Q., A three-dimensional miscible transport model for seawater intrusion in China, Water Resour. Res., 1995, vol. 31, no. 4, pp. 903−912.

    Article  Google Scholar 

  29. Zhang, Q., Volker, R.E., and Lockington, D.A., Influence of seaward boundary condition on contaminant transport in unconfined coastal aquifers, Contam. Hydrol., 2001, vol. 49, nos. 3−4, pp. 201−215.

    Article  Google Scholar 

  30. Zyryanov, V.N., Chebanova, M.K., and Filatov, N.N., Seawater intrusion into river mouths, Water Resour., 2015, vol. 42, no. 5, pp. 616−626.

    Article  Google Scholar 

Download references

Funding

This research was supported by Urmia Lake Research Institute (Project no. 95.A.008).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: H. Ahmadi, M. Hemmati; Methodology: M. Motallebian, Hojjat Ahmadi, M. Hemmat. Writing-Original draft preparation: H. Ahmadi; editing: M. Hemmati, M. Motallebian.

Corresponding author

Correspondence to Hojjat Ahmadi.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY

The data is available upon request from the corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, H., Hemmati, M. & Motallebian, M. Numerical modeling of Saltwater Wedge under Intruding and Receding Conditions (Case Study: Kahriz Aquifer, Lake Urmia). Water Resour 49, 249–258 (2022). https://doi.org/10.1134/S0097807822020099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807822020099

Keywords:

Navigation