Skip to main content
Log in

Quantitative measures of cortical functional connectivity: A state-of-the-art brief survey

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The modern concepts of quantitative measurement of the strength of functional and effective cortical connectivity in neurocognitive networks (large-scale distributed brain systems of interacting neuronal populations that are believed to underlie cognitive processing) are reviewed. The two main classes of the methods of connectivity assessment (linear and nonlinear) are discussed. In the class of linear methods, in addition to coherence routinely used to measure the strength of functional links, the vector autoregressive modeling of multichannel EEG is discussed in detail. The latter technique allows the estimation of both functional and effective connectivity, i.e., the measures such as directed transfer function (DTF) and direct partial coherence (PDC) extensively used in cognitive neuroscience. The impact of volume conduction on different estimates of connectivity is considered and the imaginary part of complex-valued coherence as a way to reduce the artificial influence of volume conduction is discussed. Independent component analysis (ICA) and transfer entropy as a method of estimating direct influence are reviewed in the class of nonlinear methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bressler, S.L. and Menon, V., Large-scale brain networks in cognition: Emerging methods and principles, Trends Cogn. Sci., 2010, vol. 14, no. 6, p. 277.

    Article  PubMed  Google Scholar 

  2. Wang, X-J., Neurophysiological and computational principles of cortical rhythms, Cogn. Physiol. Rev., 2010, vol. 90, no. 3, p. 1195.

    Article  Google Scholar 

  3. Varela, F., Lachaux, J.-P., Rodriguez, E., and Martinerie, J., The brainweb: Phase synchronization and large-scale integration, Nat. Rev. Neurosci., 2001, vol. 2, p. 229.

    Article  PubMed  CAS  Google Scholar 

  4. Senkowski, D., Schneider, T.R., Foxe, J.J., and Engel, A.K., Crossmodal binding through neural coherence: Implications for multisensory processing, Trends Neurosci., 2008, vol. 31, no. 8, p. 401.

    Article  PubMed  CAS  Google Scholar 

  5. Sauseng, P. and Klimesch, W., What does phase information of oscillatory brain activity tell us about cognitive processes?, Neurosci. Biobehav. Rev., 2008, vol. 32, no. 5, p. 1001.

    Article  PubMed  Google Scholar 

  6. Darvas, F., Miller, K.J., Rao, R.P.N., and Ojemann, J.G., Nonlinear phase-phase cross-frequency coupling mediates communication between distant sites in human neocortex, J. Neurosci., 2009, vol. 29, no. 2, p. 426.

    Article  PubMed  CAS  Google Scholar 

  7. Tabareau, N., Slotine, J.-J., and Pham, Q.-C., How Synchronization Protects from Noise, PLoS Comput. Biol., 2010, vol. 6, no. 1, p. e1000637.

    Article  PubMed  Google Scholar 

  8. Nolte, G., Bai, O., Wheaton, L., et al., Identifying true brain interaction from eeg data using the imaginary part of coherency, Clin. Neurophysiol., 2004, vol. 115, p. 2292.

    Article  PubMed  Google Scholar 

  9. Sun, J., Li, Z., and Tong, S., Inferring functional neural connectivity with phase synchronization analysis: a review of methodology, Comput. Math. Methods Med., 2012; 2012:239210. doi: 10.1155/2012/239210. Epub 2012 Apr 22. www.ncbi.nlm.nih.gov/pubmed/22577470.

    Google Scholar 

  10. Sazonov, A.V., Ho, C.H., Bergmans, J.W.M., et al., An investigation of the phase locking index for measuring of interdependency of cortical source signals recorded in the EEG, Biol. Cybern., 2009, vol. 100, p. 129.

    Article  PubMed  Google Scholar 

  11. Astolfi, L., Cincotti, F., Babiloni, C., et al., Estimation of the cortical connectivity by high-resolution EEG and structural equation modeling: Simulations and application to finger tapping data, IEEE Trans. Biomed. Eng., 2005, vol. 52, no. 5, p. 757.

    Article  PubMed  Google Scholar 

  12. Zhuang, J., Peltier, S., He, S., et al., Mapping the connectivity with structural equation modeling in an fMRI study of shape-from-motion task, Neuroimage, 2008, vol. 42, p. 799.

    Article  PubMed  Google Scholar 

  13. Marple, S.L., Jr., Tsifrovoi spektral’nyi analiz i ego prilozheniya (Digital Spectral Analysis and Its Applications), Moscow: Mir, 1990, p. 584.

    Google Scholar 

  14. Kaminski, M., Ding, M., Truccolo, W.A., and Bressler, S.L., Evaluating causal relations in neural systems: granger causality, direct transfer function and statistical assessment of significance, Biol. Cybern., 2001, vol. 85, p. 145.

    Article  PubMed  CAS  Google Scholar 

  15. Baccala, L.A. and Sameshima, K., Partial directed coherence: A new concept in neural structure determination, Biol. Cybern., 2001, vol. 84, p. 463.

    Article  PubMed  CAS  Google Scholar 

  16. Kurgansky, A.V. and Machinskaya, R.I., Bilateral frontal theta-waves in EEG of 7–8-year-old children with learning difficulties: qualitative and quantitative analysis, Hum. Physiol., 2012, vol. 38, no. 3, p. 255.

    Article  Google Scholar 

  17. Kurgansky, A.V. and Grigal, P.P., Directed corticocortical functional connectivity at the early stages of serial learning in adults and seven-to eight-year-old children, Hum. Physiol., 2010, vol. 36, no. 4, p. 408.

    Article  Google Scholar 

  18. Kurgansky, A.V., Some Problems of the Study of Cortical-Cortical Functional Connections Using a Vector Autoregression Model of Multichannel EEG, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2010, vol. 60, no. 5, p. 630.

    Google Scholar 

  19. Grech, R., Cassar, T., Muscat, J., et al., Review on solving the inverse problem in EEG source analysis, J. NeuroEng. Rehabil., 2008, vol. 5, p. 25.

    Article  PubMed  Google Scholar 

  20. Le, J., Menon, V., and Gevins, A., Local estimate of surface Laplacian derivation on a realistically shaped scalp surface and its performance on noisy data, EEG Clin. Neurophysiol., 1994, vol. 92, p. 433.

    Article  CAS  Google Scholar 

  21. Nunez, P.L. and Westdorp, A.F., The surface Laplacian, high resolution EEG and controversies, Brain Topography, 1994, vol. 6, no. 3, p. 221.

    Article  PubMed  CAS  Google Scholar 

  22. Nunez, P.L., Toward a quantitative description of large-scale neocortical dynamic function and EEG, Behav. Brain Sci., 2000, vol. 23, p. 371.

    Article  PubMed  CAS  Google Scholar 

  23. Ferree, T.C. and Srinivasan, R., Theory and calculation of the scalp surface Laplacian: Technical note, Electrical Geodesics, 2000.

    Google Scholar 

  24. Kramer, M.A. and Szeri, A.J., Quantitative approximation of the cortical surface potential from EEG and ECoG measurements, IEEE Trans. Biomed. Eng., 2004, vol. 51, no. 8, p. 1358.

    Article  PubMed  Google Scholar 

  25. Hallez, H., Vanrumste, B., Grech, R., et al., Review on solving the forward problem in EEG source analysis, J. NeuroEng. Rehabil., 2007, vol. 4, p. 46.

    Article  PubMed  Google Scholar 

  26. Friston, K., Harrison, L., Daunizeau, J., et al., Multiple Sparse priors for the M/EEG inverse problem, NeuroImage, 2008, vol. 39, p. 1104.

    Article  PubMed  Google Scholar 

  27. Supp, G.G., Schlogl, A., Trujillo-Barreto, N., et al., Directed cortical information flow during human object recognition: Analyzing induced EEG gamma-band responses in brain’s source space, PLoS One, 2007, vol. 2, no. 8, p. e684.

    Article  PubMed  Google Scholar 

  28. Friston, K.J., Harrison, L., and Penny, W., Dynamic causal modelling, NeuroImage, 2003, vol. 19, no. 4, p. 1273.

    Article  PubMed  CAS  Google Scholar 

  29. Penny, W.D., Stephan, K.E., Mechelli, A., and Friston, K.J., Modelling functional integration: A comparison of structural equation and dynamic causal models, NeuroImage, 2004, vol. 23.

  30. Lee, L., Friston, K., and Horwitz, B., Large-scale neural models and dynamic causal modelling, NeuroImage, 2006, vol. 30, no. 4, p. 1243.

    Article  PubMed  Google Scholar 

  31. Friston, K.J., Bastos, A., Litvak, V., et al., DCM for complex-valued data: Cross-spectra, coherence and phase-delays, NeuroImage, 2012, vol. 59, p. 439.

    Article  PubMed  CAS  Google Scholar 

  32. Cadotte, A.J., DeMarse, T.B., He, P., and Ding, M., Causal Measures of Structure and Plasticity in Simulated and Living Neural Networks, PLoS ONE, 2008, vol. 3, no. 10, p. e3355.

    Article  PubMed  Google Scholar 

  33. Guo, S., Seth, A.K., Kendrick, K.M., et al., Partial Granger causality-eliminating exogenous inputs and latent variables, J. Neurosci. Methods, 2008, vol. 172, no. 1, p. 79.

    Article  PubMed  Google Scholar 

  34. Guo, S., Wu, J., Ding, M., and Feng, J., Uncovering interactions in the frequency domain, PLoS Comp. Biol., 2008, vol. 4, no. 5, p. e1000087.

    Article  Google Scholar 

  35. Sakkalis, V., Review of advanced techniques for estimation of brain connectivity measured with EEG/EMG, Comput. Biol. Med., 2011, vol. 41, no. 12, p. 1110.

    Article  PubMed  CAS  Google Scholar 

  36. Lachaux, J.P., Rudrauf, D., Cosmelli, D., et al., Estimating the time-course of coherence between single-trial brain signals: An introduction to wavelet coherence, Neurophisiol. Clin., 2002, vol. 32, no. 3, p. 157.

    Article  Google Scholar 

  37. Payne, L. and Kounios, J., Coherent oscillatory networks supporting short-term memory retention, Brain Res., 2009, vol. 1247, p. 126.

    Article  PubMed  CAS  Google Scholar 

  38. Cui, J., Xu, L., Bressler, S.L., et al., BSMART: A Mat-lab/C toolbox for analysis of multichannel neural time series, Neuron Networks, 2008, vol. 21, p. 1094.

    Article  Google Scholar 

  39. Ding, M., Bressler, S.L., Yang, W., and Liang, H., Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: Data preprocessing, model validation, and variability assessment, Biol. Cybern., 2000, vol. 83, p. 35.

    Article  PubMed  CAS  Google Scholar 

  40. Moller, E., Schack, B., Arnold, M., and Witte, H., Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models, J. Neurosci. Methods, 2001, vol. 105, p. 143.

    Article  PubMed  CAS  Google Scholar 

  41. Hesse, W., Moller, E., Arnold, V., and Schack, B., The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies, J. Neurosci. Methods, 2003, vol. 124, p. 27.

    Article  PubMed  Google Scholar 

  42. Moller, E., Schack, B., Vath, N., and Witte, H., Fitting of one ARMA model to multiple trials increases the time resolution of instantaneous coherence, Biol. Cybern., 2003, vol. 89, p. 303.

    Article  PubMed  Google Scholar 

  43. Salazar, R.F., Konig, P., and Kayser, C., Directed interactions between visual areas and their role in processing image structure and expectancy, Eur. J. Neurosci., 2004, vol. 20, p. 1391.

    Article  PubMed  Google Scholar 

  44. Schelter, B., Winterhalder, M., Eichler, M., et al., Testing for directed influences among neural signals using partial directed coherence, J. Neurosci. Methods, 2005, vol. 152, p. 210.

    Article  PubMed  Google Scholar 

  45. Stephan, K.E., Harrison, L.M., Penny, W.D., and Friston, K.J., Biophysical models of fMRI responses, Curr. Opin. Neurobiol., 2004, vol. 14, p. 629.

    Article  PubMed  CAS  Google Scholar 

  46. Babiloni, F., Cincotti, F., Babiloni, C., et al., Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function, NeuroImage, 2005, vol. 24, p. 118.

    Article  PubMed  CAS  Google Scholar 

  47. Kaminski, M., Determination of transmission patterns in multichannel data, Philos. Trans. R. Soc. London B., 2005, vol. 360, p. 947.

    Article  Google Scholar 

  48. Bell, A.J. and Sejnowski, T.J., An information-maximization approach to blind separation and blind deconvolution, Neural Computation, 1995, vol. 7, no. 6, p. 1129.

    Article  PubMed  CAS  Google Scholar 

  49. Onton, J. and Makeig, S., Information-based modeling of event-related brain dynamics, in Progress in Brain Research, Neuper and Klimesch, Eds., 2006.

    Google Scholar 

  50. Mantini, D., Perrucci, M.G., Del Gratta, C., et al., Electrophysiological signatures of resting state networks in the human brain, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 32, p. 13170.

    Article  PubMed  CAS  Google Scholar 

  51. Liao, W., Mantini, D., Zhang, Z., et al., Evaluating the effective connectivity of resting state networks using conditional granger causality, Biol. Cybern., 2010, vol. 102, p. 57.

    Article  PubMed  Google Scholar 

  52. Schreiber, T., Measuring Information Transfer, Phys. Rev. Lett., 2000, vol. 85, p. 461.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Kurgansky, 2013, published in Fiziologiya Cheloveka, 2013, Vol. 39, No. 4, pp. 112–122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurgansky, A.V. Quantitative measures of cortical functional connectivity: A state-of-the-art brief survey. Hum Physiol 39, 432–440 (2013). https://doi.org/10.1134/S0362119713030134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119713030134

Keywords

Navigation