Skip to main content
Log in

Cortical functional connectivity during the retention of affective pictures in working memory: EEG-source theta coherence analysis

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The pattern of cortical functional connectivity in the source space was studied in a group of righthanded adult participants (N = 44:17 women, 27 men, aged M = 29.61 ± 6.45 years). Participants retained the traces of realistic pictures of positive, neutral, and negative emotional valences in their working memory (WM) while performing the same-different task. Within the framework of this task, participants had to compare the initial picture against a target picture that followed after a specified delay. The coherence (COH) between the pairs of cortical sources chosen in advance according to fMRI data was estimated in the theta frequency range for the period preceding the initial stimulus, during the retention of the initial stimulus in WM, and during the rest interval between successive trials. Two distinct sets of functional links were found. The links of the first type that presumably reflected the involvement of sustained attention were between the dorsal anterior cingulate cortex, the prefrontal areas, and temporal areas of the right hemispheres. When compared to the rest period, the links of this type showed strengthening not only during the retention period but also during the period preceding the initial picture. The links of the second type presumably reflected a progressive neocortex-to-hippocampus functional integration with increasing memory load and strengthened exclusively during the retention period. These links were between the parietal, temporal and prefrontal cortices in the lateral surface of both hemispheres with the additional inclusion of the posterior cingulate cortex and the medial parietal cortex in the left hemisphere. The impact of emotional valence on the strength and topography of the functional links of the second type was found. In the left hemisphere, the increase of strength of cortical interaction was more pronounced for the pictures of positive valence than for the pictures of either neutral or negative valences. When compared to the pictures of neutral valence, the retention of pictorial information of both positive and negative valence showed some extraneous integration of the cortical areas for the theta rhythm. This finding might be related to the additional load exerted by emotionally colored pictures onto the mechanisms of short-time retention of visual information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolcos, F., Wang, L., and Mather, M., Current research and emerging directions in emotion-cognition interactions, Front. Integr. Neurosci., 2014, vol. 8, p. 83.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mather, M., Mitchell, K.J., Raye, C.L., et al., Emotional arousal can impair feature binding in working memory, J. Cognit. Neurosci., 2006, vol. 18, no. 4, p. 614.

    Article  Google Scholar 

  3. Shafer, A.T. and Dolcos, F., Neural correlates of opposing effects of emotional distraction on perception and episodic memory: an event-related fMRI investigation, Front. Integr. Neurosci., 2012, vol. 6, p. 70.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sussman, T.J., Heller, W., Miller, G.A., and Mohanty, A., Emotional distractors can enhance attention, Psychol. Sci., 2013, vol. 24, no. 11, p. 2322.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jackson, M.C., Linden, D.E., and Raymond, J.E., Angry expressions strengthen the encoding and maintenance of face identity representations in visual working memory, Cognit. Emotion, 2014, vol. 28, no. 2, p. 278.

    Article  Google Scholar 

  6. Maran, T., Sachse, P., and Furtner, M., From specificity to sensitivity: affective states modulate visual working memory for emotional expressive faces, Front. Psychol., 2015, vol. 6, p. 1297.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Murphy, F.C., Nimmo-Smith, I., and Lawrence, A.D., Functional neuroanatomy of emotion: a meta-analysis, Cognit. Affective Behav. Neurosci., 2003, vol. 3, no. 3, p. 207.

    Article  Google Scholar 

  8. Wager, T.D., Phan, K.L., Liberzon, I., and Taylor, S.F., Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging, Neuroimage, 2003, vol. 19, p. 513.

    Article  PubMed  Google Scholar 

  9. Alves, N.T., Fukusima, S.S., and Aznar-Casanova, J.A., Models of brain asymmetry in emotional processing, Psychol. Neurosci., 2008, vol. 1, no. 1, p. 63.

    Google Scholar 

  10. Barrett, L.F. and Wager, T.D., The structure of emotion evidence from neuroimaging studies, Curr. Dir. Psychol. Sci., 2006, vol. 15, no. 2, p. 79.

    Article  Google Scholar 

  11. Hamann, S., Mapping discrete and dimensional emotions onto the brain: controversies and consensus, Trends Cognit. Sci., 2012, vol. 16, no. 9, p. 458.

    Article  Google Scholar 

  12. Lindquist, K.A., Wager, T.D., Kober, H., et al., The brain basis of emotion: a meta-analytic review, Behav. Brain Sci., 2012, vol. 35, no. 3, p. 121.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Anders, S., Lotze, M., Erb, M., et al., Brain activity underlying emotional valence and arousal: a responserelated fMRI study, Hum. Brain Mapp., 2004, vol. 23, no. 4, p. 200.

    Article  PubMed  Google Scholar 

  14. Nielen, M.M., Heslenfeld, D.J., Heinen, K., et al., Distinct brain systems underlie the processing of valence and arousal of affective pictures, Brain Cognit., 2009, vol. 71, no. 3, p. 387.

    Article  CAS  Google Scholar 

  15. Viinikainen, M., Jaaskelainen, I.P., Alexandrov, Y., et al., Nonlinear relationship between emotional valence and brain activity: evidence of separate negative and positive valence dimensions, Hum. Brain Mapp., 2009, vol. 31, no. 7, p. 1030.

    Article  Google Scholar 

  16. Lindquist, K.A., Satpute, A.B., Wager, T.D., et al., The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature, Cereb. Cortex, 2015. doi 10.1093/cercor/bhv001

    Google Scholar 

  17. Pessoa, L., On the relationship between emotion and cognition, Nat. Rev. Neurosci., 2008, vol. 9, no. 2, p. 148.

    Article  CAS  PubMed  Google Scholar 

  18. Pessoa, L., Beyond brain regions: network perspective of cognition-emotion interactions, Behav. Brain Sci., 2012, vol. 35, no. 3, p. 158.

    Article  PubMed  Google Scholar 

  19. Ledoux, J.E., Cognitive-emotional interactions in the brain, Cognit. Emotion, 1989, vol. 3, no. 4, p. 267.

    Article  Google Scholar 

  20. Friston, K.J., Functional and effective connectivity: a review, Brain Connect., 2011, vol. 1, no. 1, p. 13.

    Article  PubMed  Google Scholar 

  21. Bressler, S.L. and Tognoli, E., Operational principles of neurocognitive networks, Int. J. Psychophysiol., 2006, vol. 60, no. 2, p. 139.

    Article  PubMed  Google Scholar 

  22. Uhlhaas, P.J., Pipa, G., Lima, B., et al., Neural synchrony in cortical networks: history, concept and current status, Front. Integr. Neurosci., 2009, vol. 3, p. 17.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Singer, W., Distributed processing and temporal codes in neuronal networks, Cognit. Neurodyn., 2009, vol. 3, no. 3, p. 189.

    Article  Google Scholar 

  24. Ivanitskii, A.M., Interaction foci, informational synthesis and mental processes, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1993, vol. 43, no. 2, p. 219.

    CAS  Google Scholar 

  25. Baddeley, A., Working memory, Science, 1992, vol. 255, no. 5044, p. 556.

    Article  CAS  PubMed  Google Scholar 

  26. Raghavachari, S., Lisman, J.E., Tully, M., et al., Theta oscillations in human cortex during a working-memory task: evidence for local generators, J. Neurophysiol., 2006, vol. 95, no. 3, p. 1630.

    Article  CAS  PubMed  Google Scholar 

  27. Sauseng, P., Hoppe, J., Klimesch, W., et al., Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range, Eur. J. Neurosci., 2007, vol. 25, no. 2, p. 587.

    Article  CAS  PubMed  Google Scholar 

  28. Machinskaya R.I. and Kurganskii A.V. A comparative electrophysiological study of regulatory components of working memory in adults and seven–to eight-year-old children: an analysis of coherence of EEG rhythms, Hum. Physiol., 2012. vol. 38, no. 1, p. 1.

    Article  Google Scholar 

  29. Kostopoulos, P. and Petrides, M., Waiting to retrieve: possible implications for brain function, Exp. Brain Res., 2008, vol. 188, no. 1, p. 91.

    Article  PubMed  Google Scholar 

  30. Jeneson, A. and Squire, L.R., Working memory, longterm memory, and medial temporal lobe function, Learn. Mem., 2011, vol. 19, no. 1, p. 15.

    Article  PubMed  Google Scholar 

  31. Gazzaley, A., Rissman, J., and D’Esposito, M., Functional connectivity during working memory maintenance, Cognit. Affective Behav. Neurosci., 2004, vol. 4, no. 4, p. 580.

    Article  Google Scholar 

  32. Palva, S., Kulashekhar, S., Hamalainen, M., and Palva, J.M., Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention, J. Neurosci., 2011, vol. 31, no. 13, p. 5013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lehnert, G. and Zimmer, H.D., Modality and domain specific components in auditory and visual working memory tasks, Cognit. Process., 2008, vol. 9, no. 1, p. 53.

    Article  Google Scholar 

  34. Soemer, A. and Saito, S., Maintenance of auditorynonverbal information in working memory, Psychon. Bull. Rev., 2015, vol. 22, no. 6, p. 1777.

    Article  PubMed  Google Scholar 

  35. Katus, T., Grubert, A., and Eimer, M., Electrophysiological evidence for a sensory recruitment model of somatosensory working memory, Cereb. Cortex, 2015, vol. 25, no. 12, p. 4697.

    Article  PubMed  Google Scholar 

  36. Fiebach, C.J., Rissman, J., and D’Esposito, M., Modulation of inferotemporal cortex activation during verbal working memory maintenance, Neuron, 2006, vol. 51, no. 2, p. 251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vigneau, M., Beaucousin, V., Herve, P.Y., et al., Metaanalyzing left hemisphere language areas: phonology, semantics, and sentence processing, Neuroimage, 2006, vol. 30, no. 4, p. 1414.

    Article  CAS  PubMed  Google Scholar 

  38. Dörfler, T., Simmel, A., Schleif, F.-M., and Sommerfeld, E., Complexity-dependent synchronization of brain subsystems during memorization, Proc. 17th Meeeting of the International Society for Psychophysics, 2001, p. 343.

    Google Scholar 

  39. Klimesch, W., Hanslmayr, S., Sauseng, P., et al., Oscillatory EEG correlates of episodic trace decay, Cereb. Cortex, 2006, vol. 16, no. 2, p. 280.

    Article  CAS  PubMed  Google Scholar 

  40. Sauseng, P., Klimesch, W., Heise, K.F., et al., Brain oscillatory substrates of visual short-term memory capacity, Curr. Biol., 2009, vol. 19, no. 21, p. 1846.

    Article  CAS  PubMed  Google Scholar 

  41. Freunberger, R., Fellinger, R., Sauseng, P., et al., Dissociation between phase-locked and nonphase-locked alpha oscillations in a working memory task, Hum. Brain Mapp., 2009, vol. 30, no. 10, p. 3417.

    Article  PubMed  Google Scholar 

  42. Kawasaki, M., Kitajo, K., and Yamaguchi, Y., Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory, Eur. J. Neurosci., 2010, vol. 31, no. 9, p. 1683.

    PubMed  PubMed Central  Google Scholar 

  43. Glennon, M., Keane, M.A., Elliott, M.A., and Sauseng, P., Distributed cortical phase synchronization in the EEG reveals parallel attention and working memory processes involved in the attentional blink, Cereb. Cortex, 2015. doi 10.1093/cercor/bhv023

    Google Scholar 

  44. Nyhus, E. and Curran, T., Functional role of gamma and theta oscillations in episodic memory, Neurosci. Biobehav. Rev., 2010, vol. 34, no. 7, p. 1023.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Park, J.Y., Jhung, K., Lee, J., and An, S.K., Thetagamma coupling during a working memory task as compared to a simple vigilance task, Neurosci. Lett., 2013, vol. 532, p. 39.

    Article  CAS  PubMed  Google Scholar 

  46. Rozovskaya, R.I., Machinskaya, R.I., and Pechenkova, E.V., The influence of emotional coloring of images on visual working memory in adults and adolescents, Hum. Physiol., 2016, vol. 42, no. 1, p. 69.

    Article  Google Scholar 

  47. Bradley, M.M. and Lang, P.J., The International Afective Picture System (IAPS) in the study of emotion and attention, in Handbook of Emotion Elicitation and Assessment, Coan, J.A. and Allen, J.J.B., Eds., Oxford Univ. Press, 2007, p. 29.

    Google Scholar 

  48. Lang, P.J., Bradley, M.M., and Cuthbert, B.N., International affective picture system (IAPS): affective ratings of pictures and instruction manual, in Technical Report A-8, Gainesville (FL): Univ. of Florida, 2008

    Google Scholar 

  49. Dan-Glauser, E.S. and Scherer, K.R., The Genewa affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance, Behav. Res. Methods, 2011, vol. 43, no. 2, p. 468.

    Article  PubMed  Google Scholar 

  50. Luck, S.J. and Vogel, E.K., The capacity of visual working memory for features and conjunctions, Nature, 1997, vol. 390, no. 6657, p. 279.

    Article  CAS  PubMed  Google Scholar 

  51. Rozovskaya, R.I., Pechenkova, E.V., Mershina, E.A., and Machinskaya, R.I., fMRI study of retention of images with different emotional valence in the working memory, Psikhol. Zh. Vyssh. Shk. Ekon., 2014, vol. 11, no. 1, p. 27.

    Google Scholar 

  52. Kurganskii, A.V., Several problems of studying the cortex–cortex functional connections with the vector autoregression model of a multilead EEG, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2010, vol. 60, no. 6, p. 740.

    CAS  Google Scholar 

  53. Pascual-Marqui, R.D., Lehmann, D., Koukkou, M., et al., Assessing interactions in the brain with exact low-resolution electromagnetic tomography, Philos. Trans. R. Soc. A, 2011, vol. 369, no. 1952, p. 3768.

    Article  Google Scholar 

  54. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, NeuroImage, 2002, vol. 15, p. 273.

    Article  CAS  PubMed  Google Scholar 

  55. Brett, M., Anton, J.-L., Valabregue, R., and Poline, J.-B., Region of interest analysis using an SPM toolbox (Proc. 8th Int. Conf. on Functional Mapping of the Human Brain), NeuroImage, 2002, vol. 16, no. 2, suppl. 1, abstr. 497, p. 769

    Article  Google Scholar 

  56. Cui, J., Xu, L., Steven, L., et al., BSMART: a MatLab/C toolbox for analysis of multichannel neural time series, Neural Networks, 2008, vol. 21, no. 8, p. 1094.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hsieh, L.T. and Ranganath, C., Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval, NeuroImage, 2014, vol. 85, no. 2, p. 721.

    Article  PubMed  Google Scholar 

  58. Ishii, R., Canuet, L., Ishihara, T., et al., Frontal midline theta rhythm and gamma power changes during focused attention on mental calculation: an MEG beamformer analysis, Front. Hum. Neurosci., 2014, vol. 8, p. 406.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tsujimoto, T., Shimazu, H., Isomura, Y., and Sasaki, K., Theta oscillations in primate prefrontal and anterior cingulate cortices in forewarned reaction time tasks, J. Neurophysiol., 2010, vol. 103, no. 2, p. 827.

    Article  PubMed  Google Scholar 

  60. Petit, L., Courtney, S.M., Ungerleider, L.G., and Haxby, J.V., Sustained activity in the medial wall during working memory delays, J. Neurosci., 1998, vol. 18, no. 22, p. 9429.

    CAS  PubMed  Google Scholar 

  61. Johannsen, P., Jakobsen, J., Bruhn, P., and Gjedde, A., Cortical responses to sustained and divided attention in Alzheimer’s disease, NeuroImage, 1999, vol. 10, no. 3, p. 269.

    Article  CAS  PubMed  Google Scholar 

  62. Corbetta, M. and Shulman, G.L., Control of goaldirected and stimulus-driven attention in the brain, Nat. Rev. Neurosci., 2002, vol. 3, no. 3, p. 201.

    Article  CAS  PubMed  Google Scholar 

  63. Cabeza, R., Ciaramelli, E., Olson, I.R., and Moscovitch, M., The parietal cortex and episodic memory: an attentional account, Nat. Rev. Neurosci., 2008, vol. 9, no. 8, p. 613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Davidson, R.J., Anterior cerebral asymmetry and the nature of emotion, Brain Cognit., 1992, vol. 20, no. 1, p. 125.

    Article  CAS  Google Scholar 

  65. Beraha, E., Eggers, J., Hindi Attar, C., et al., Hemispheric asymmetry for affective stimulus processing in healthy subjects—a fMRI study, PLoS One, 2012, vol. 7, no. 10, e46931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Machinskaya.

Additional information

Original Russian Text © R.I. Machinskaya, R.I. Rozovskaya, A.V. Kurgansky, E.V. Pechenkova, 2016, published in Fiziologiya Cheloveka, 2016, Vol. 42, No. 3, pp. 56–73.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machinskaya, R.I., Rozovskaya, R.I., Kurgansky, A.V. et al. Cortical functional connectivity during the retention of affective pictures in working memory: EEG-source theta coherence analysis. Hum Physiol 42, 279–293 (2016). https://doi.org/10.1134/S0362119716020122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716020122

Keywords

Navigation