Skip to main content
Log in

Electromagnetic 3D tomography of the Elbrus volcanic center according to magnetotelluric and satellite data

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

A geoelectric 3D model of the potentially active Elbrus volcano and its vicinities has been constructed using magnetotelluric data, which takes the volume model of the tectonic fragmentation field developed based on deciphering satellite photographs into account. An original method of searching for the correlation and determination of the character of the interrelation between the ground-based and satellite data has been used in this construction. The geoelectric 3D model constructed includes two conducting objects located at different depths. One of the objects, with a resistivity of 25–40 Ω m, located at depths of 0–10 km, is most intense at a depth of 5 km, where the object is quasi-isometric in shape and has a radius of 10 km along the 40–60 Ω m contour lines. Another object with a resistivity of 10–40 Ω m is located at a depth of ∼45 km, where its dimensions along the contour line for 40 Ω m are 35 and 15 km in latitude and longitude, respectively. The thickness of the conducting core is approximately 20 km. The upper and lower objects can be interpreted as a volcano magma chamber and a volcano parent chamber, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbuzkin, V.N., Kompaniets, M.A., Andreeva, E.V., et al., Magnetotelluric Sounding on the Elbrus Profile, Pyatye geofizicheskie chteniya im. V.V. Fedynskogo (V.V. Fedynskii 5th Geophysical Readings), Moscow, 2003.

  2. Bagataev, R.M., Suleimanov, A.K., Nechaev, Yu.V., et al., Reflection of Dagestan Depth Structures in the Field of Tectonic Fragmentation of the Lithosphere, Electronic Scientific-Information Journal “Vestn. Otd. Nauk Zeml., Ross. Akad. Sci.,” 2003, no. 1(21).

  3. Van’yan, L.L., Elektromagnitnye zondirovaniya (Electromagnetic Soundings), Moscow: Nauch. Mir, 1997.

    Google Scholar 

  4. Grekov, I.I. and Arbuzkin, V.N., Specific Features of the Depth Structure of the Transcaucasian Transverse Uplift glubinnogo stroeniya Transkavkazskogo poperechnogo podnyatiya, Sed’mye geofizicheskie chteniya im. V.V. Fedynskogo (V.V. Fedynskii 7th Geophysical Readings), Moscow: GEON, 2005, pp. 45–46.

    Google Scholar 

  5. Karta razlomov territorii SSSR i sopredel’nykh stran. M-b 1: 2500000 (Map of Faults in the USSR and Adjacent States of Scale 1: 2500000), Sidorenko, A. V., Ed., Moscow: Min. Geol. SSSR, VNII Geofizika, 1980.

    Google Scholar 

  6. Catastrophic Processes and Their Effect on the Natural Environment, in Global’nye izmeneniya prirodnoi sredy i klimata. Vulkanizm (Global Changes in the Natural Environment and Climate: Volcanism), Moscow, 2002, vol. 1.

  7. Krasnopevtseva, G.V., Glubinnoe stroenie Kavkazskogo seismoaktivnogo regiona (Depth Structure of the Caucasus Seismic Region), Moscow: Nauka, 1984.

    Google Scholar 

  8. Kukhmazov, S.U., Kompleksnye geologo-geofizicheskie nablyudeniya po priel’brusskomu profilyu. Seismologicheskie issledovaniya (Complex Geological-Geophysical Observations on the Elbrus Profile. Seismological Studies), Essentuki: MGNPVP “SEI-EKO-GEON,” 2002.

    Google Scholar 

  9. Litovko, G.V., Trofimenko, E.A., Grekov, I.I., et al., Otchet o kompleksnykh geologo-geofizicheskikh issledovaniyakh po priel’brusskomu profilyu (Report ON Complex Geological-Geophysical Studies on the Elbrus Profile), Essentuki: Min. Prir. Res. RF; Glavn. Upravl. Prir. Res. Okhr. Okr. Sredy MPR Ros. Stavropol. Krayu; FGUGP “Kavkazgeols”emka”; MGNPVP “SEI-EKOGEON,” 2002.

    Google Scholar 

  10. Monitoring of Magmatic Structures of the Elbrus Volcano, in Regional’naya obshchestvennaya organizatsiya uchenykh po problemam prikladnoi geofiziki (Regional Public Organization of Scientists on Problems of Applied Geophysics), Laverov, N.P., Ed., Moscow: IFZ RAN, 2001.

  11. Nechaev, Yu.V., Space Technologies in Problems of Studying Local Earth’s Crust Inhomogeneities, in Geofizika na rubezhe vekov (Geophysics at the Boundary between Centuries), Moscow: OIFZ RAN, 1999, pp. 276–290.

    Google Scholar 

  12. Sobisevich, A.L., Nechaev, Yu.V., Arbuzkin, V.N., et al., New Geophysical Data on the Structure of Magmatic Formations in the Region of the Elbrus Volcanic Center, in Issledovaniya v oblasti geofiziki (Studies in the Field of Geophysics), Moscow: OIFZ RAN, 2004, pp. 272–285.

    Google Scholar 

  13. Spichak, V.V., Magnitotelluricheskie polya v trekhmernykh modelyakh geoelektriki (Magnetotelluric Fields in 3D Geoelectric Models), Moscow: Nauch. Mir, 1999.

    Google Scholar 

  14. Spichak, V.V. and Popova, I.V., Artificial Neural Network Inversion of Magnetotelluric Data in Terms of Three-Dimensional Earth Macroparameters, Geophys. J. Int., 2000, no. 142, pp. 15–26.

  15. Khain, V.E., Regional’naya geotektonika (Regional Geotectonics), Moscow: Nedra, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Spichak, V.P. Borisova, E.B. Fainberg, A.A. Khalezov, A.G. Goidina, 2007, published in Vulkanologiya i Seismologiya, 2007, No. 1, pp. 58–73.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spichak, V.V., Borisova, V.P., Fainberg, E.B. et al. Electromagnetic 3D tomography of the Elbrus volcanic center according to magnetotelluric and satellite data. J. Volcanolog. Seismol. 1, 53–66 (2007). https://doi.org/10.1134/S0742046307010046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046307010046

Keywords

Navigation