Skip to main content
Log in

The mechanism of heat transfer in nanofluids: state of the art (review). Part 1. Synthesis and properties of nanofluids

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

Here is the review of experimental and theoretical results on the mechanism of heat transfer in nanofluids. A wide scope of problems related to the technology of nanofluid production, experimental equipment, and features of measurement methods is considered. Experimental data on heat conductivity of nanofluids with different concentrations, sizes, and material of nanoparticles are presented. Results on forced and free convection in laminar, and turbulent flows are analyzed. The available models of physical mechanisms of heat transfer intensification and suppression in nanofluids are presented. There are significant divergences in data of different researchers; possible reasons for this divergence are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. Akoh, Y. Tsukasaki, S. Yatsuya, and A. Tasaki, Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate, J. Crystal Growth, 1978, Vol. 45, P. 495–500.

    Article  ADS  Google Scholar 

  • K. Asaka, H. Nakahara, and Y. Saito, Nanowelding of a multiwalled carbon nanotube to metal surface and its electron field emission properties, Appl. Phys. Lett., 2008, Vol. 92, P. 023114.

    Article  ADS  Google Scholar 

  • M.J. Assael, C.F. Chen, I. Metaxa, and W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water, Int. J. Thermophysics, 2004, Vol. 25, P. 971–985.

    Article  ADS  Google Scholar 

  • M. Biercuk, M. Llaguno, M. Radosavljevic, J. Hyun, A. Johnson, and J. Fischer, Carbon nanotube composites for thermal management, Appl. Phys. Lett., 2002, Vol. 80, No. 15, P. 2767–2769.

    Article  ADS  Google Scholar 

  • M. Chandrasekar and S. Suresh, A Review on the mechanisms of heat transfer in nanofluids, Heat Transfer Engng., 2009, Vol. 30, No. 14, P. 1136–1150.

    Article  ADS  Google Scholar 

  • S.U.S. Choi, Nanofluids: A new field of scientific research and innovative applications, Heat Transfer Engng., 2008, Vol. 29, No. 5, P. 429–431.

    Article  ADS  Google Scholar 

  • S.U.S. Choi, Nanofluids: from vision to reality through research, J. Heat Transfer, 2009, Vol. 131, P. 033106-1–033106-9.

    Article  Google Scholar 

  • S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, Anomalous thermal conductivity enhancement in nano-tube suspensions, Appl. Phys. Lett., 2001, Vol. 79, P. 2252–2254.

    Article  ADS  Google Scholar 

  • C.H. Chon and K.D. Kihm, Thermal conductivity enhancement of nanofluids by brownian motion, ASME J. Heat Transfer, 2005, b, Vol. 127, P. 810.

    Article  Google Scholar 

  • C.H. Chon, K.D. Kihm, S.P. Lee, and S.U.S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 2005, a, Vol. 87, P. 153107.

    Article  ADS  Google Scholar 

  • M. Chopkar, P.K. Das, and I. Manna, Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications, Scr. Mater, 2006, Vol. 55, P. 549–552.

    Article  Google Scholar 

  • S.K. Das, S.U.S. Choi, and H. Patel, Heat transfer in nanofluids. A Review, Heat Transfer Engng., 2006, Vol. 20, No. 10, P. 3–19.

    Article  ADS  Google Scholar 

  • S.K. Das, S.U.S. Choi, W. Yu, and T. Pradeep, Nanofluids Science and Technology, Wiley-Interscience, New Jersey, 2007, 397 p.

    Book  Google Scholar 

  • S.K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 2003, Vol. 125, P. 567–574.

    Article  Google Scholar 

  • Y.L. Ding, H. Alias, D.S. Wen, and R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 2006, Vol. 49, P. 240–250.

    Article  Google Scholar 

  • Y.L. Ding, H. Chen, L. Wang, C.-Y. Yang, Y. He, W. Yang, W.P. Lee, L. Zhang, and R. Huo, Heat Transfer Intensification Using Nanofluids, Powder and Particle, 2007, No. 25, P. 23–36.

  • J.A. Eastman, S.U.S. Choi, Li S., L.J. Thompson, and S. Lee, Enhanced thermal conductivity through the development of nanofluids, in: Proc. Mater. Res. Soc. Symp. Materials Res. Soc., Pittsburgh, PA, USA, Boston, MA, USA, 1997, Vol. 457, P. 3–11.

    Google Scholar 

  • J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thomson, Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 2001, Vol. 78, P. 718–720.

    Article  ADS  Google Scholar 

  • J.A. Eastman, S.R. Phillpot, S.U.S. Choi, and P. Keblinski, Thermal transport in nanofluids, Ann. Rev. Mater. Res., 2004, Vol. 34, P. 219–246.

    Article  ADS  Google Scholar 

  • A.V. Eletskii, Transport properties of carbon nanotubes, Physics Uspekhi, 2009, Vol. 179, No. 3, P. 209–223.

    ADS  Google Scholar 

  • W. Evans, J. Fish, and P. Keblinski, Role of Brownian motion hydrodynamics on nanofluids thermal conductivity, Appl. Phys. Lett., 2006, Vol. 88, P. 093116.

    Article  ADS  Google Scholar 

  • W. Evans, R. Prasher, J. Fish, P. Meakin, and P. Phelan, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, Int. J. Heat Mass Transfer, 2008, Vol. 51, P. 1431–1438.

    Article  MATH  Google Scholar 

  • J.E. Fischer and A.T. Johnson, Electronic properties of carbon nanotubes, Current Opinition in Solid State and Material Sci., 1999, Iss. 1, P.28–33.

  • L. Gao, X. Zhou, and Y.L. Ding, Effective thermal and electrical conductivity of carbon nanotube composites, Chem. Phys. Lett., 2007, Vol. 434, P. 297–300.

    Article  ADS  Google Scholar 

  • R.L. Hamilton and O.K. Crosser, Thermal conductivity of heterogeneous two component systems, I & EC Fundamentals, 1962, Vol. 1, No. 3, P. 187–191.

    Article  Google Scholar 

  • Y.R. He, Y. Jin, H.S. Chen, Y.L. Ding, D.Q. Cang, and H.L. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, 2007, Vol. 50, P. 2272–2281.

    Article  MATH  Google Scholar 

  • J. Hone, M. Whitney, C. Pisconi, and A. Zett, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev., B 25, 1999, P. R2514–R2516.

    Article  ADS  Google Scholar 

  • K.S. Hong, T.K. Hong, and H.S. Yang, Thermal Conductivity of Fe Nanofluids Depending on Cluster Size of Nanoparticles, Appl. Phys. Lett., 2006, Vol. 88, P. 031901.

    Article  ADS  Google Scholar 

  • T.-K. Hong, H.-S. Yang, and C.J. Choi, Study of the enhanced thermal conductivity of Fe nanofluids, J. Appl. Phys., 2005, Vol. 97, No. 6, P. 1–4.

    Google Scholar 

  • S. Jana, A. Salehi-Khojin, and W.-H. Zhong, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, Thermochim. Acta., 2007, Vol. 462, No. 1–2, P. 45–55.

    Article  Google Scholar 

  • H.U. Kang and S.H. Kim, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp.Heat Transfer, 2006, Vol. 19, P. 181–191.

    Article  ADS  Google Scholar 

  • P. Keblinski, S.R. Phillpot, S.U.S. Choi, and J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 2002, Vol. 45, P. 855–863.

    Article  MATH  Google Scholar 

  • P. Keblinski, J.A. Eastman, and D.G. Cahill, Nanofluids for thermal transport, Materials Today, 2005, June Iss., P. 36–44.

  • P. Keblinski, R. Prasher, and J. Eapen, Thermal conductance of nanofluids: is the controversy over? J. Nanoparticle Research, 2008, Vol. 10, No. 7, P. 1089–1097.

    Article  Google Scholar 

  • P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. Rev. Lett., 2001, Vol. 87, P. 215502.

    Article  ADS  Google Scholar 

  • S.H. Kim, S.R. Choi, and D. Kim, Thermal conductivity of metal ? oxide nanofluids: particle size dependence and effect of laser irradiation, ASME J. Heat Transfer, 2007, Vol. 129, P. 298–307.

    Article  MathSciNet  Google Scholar 

  • D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, and S.K. Das, Model for heat conduction in nanofluids, Physical Review Letter, 2004, Vol. 93, P. 144301.

    Article  ADS  Google Scholar 

  • S. Lee, S. Choi, S. Li, and J. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 1999, Vol. 121, P. 280–289.

    Article  Google Scholar 

  • C.H. Li and G.P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys., 2006, Vol. 99, P. 084314.

    Article  ADS  Google Scholar 

  • C.H. Li and G.P. Peterson, Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids), Int. J. Heat Mass Transfer, 2007, Vol. 50, P. 4668–4677.

    Article  MATH  Google Scholar 

  • M.-S. Liu, Lin M. Ching-Cheng, I.T. Huang, and C.-C. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids, Int. Comm. in Heat and Mass Transfer, 2005, Vol. 32, No. 9, P. 1202–1210.

    Article  Google Scholar 

  • M.-S. Liu, Lin M. Ching-Cheng, C.Y. Tsai, and C.-C. Wang, Enhance of thermal conductivity with Cu for nanofluids using chemical reduction method, Inter. J. Heat Mass Transfer, 2006, Vol. 49, P. 3028–3033.

    Article  Google Scholar 

  • C.-H. Lo, T.-T. Tsung, and L.-C. Chen, Ni nano-magnetic fluid prepared by submerged arc nanosynthesis system (sanss), JSME Int. J., Ser. B: Fluids and Thermal Engng., 2006, Vol. 48, No. 4, P. 750–755.

    Article  ADS  Google Scholar 

  • C.-H. Lo, T.-T. Tsung, and L.-C. Chen, Shape-controlled synthesis of Cu based nanofluid using submerged arc nanoparticle synthesis system (SANSS), J. Crystal Growth, 2005, Vol. 277, No. 1–4, P. 636–642.

    Article  ADS  Google Scholar 

  • S.M.S. Murshed, K.C. Leong, and C. Yang, Enhanced thermal conductivity of TiO2—water based nanofluids, Int. J. of Thermal Sciences, 2005, Vol. 44, No. 4, P. 367–373.

    Article  Google Scholar 

  • C.W. Nan, Z. Shi, and Y. Lin, A simple model for thermal conductivity of carbon nanotube-based composites, Chem. Phys. Lett., 2003, Vol. 375, P. 666–669.

    Article  ADS  Google Scholar 

  • M.A. Pakhomov, M.V. Protasov, V.I. Terekhov, and A.Yu. Varaksin, Experimental and numerical investigation of downward gas-dispersed turbulent pipe flow, Int. J. Heat Mass Transfer, 2007, Vol. 50, P. 2107–2116.

    Article  MATH  Google Scholar 

  • H.E. Patel, S.K. Das, T. Sundararajan, N.A. Sreekumaran, B.P. George, and T. Pradeep, Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett., 2003, Vol. 83, P. 2931–2933.

    Article  ADS  Google Scholar 

  • R. Prasher, P. Bhattacharya, and P.E. Phelan, Thermal conductivity of nanoscale colloidal solutions (nanofluids), Phys. Rev. Lett., 2005, Vol. 94, P. 025901.

    Article  ADS  Google Scholar 

  • R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. Phys. Lett., 2006, Vol. 89, P. 143119.

    Article  ADS  Google Scholar 

  • P.A. Putnam, D.G. Cahill, P.V. Braun, Z. Ge, and R.G. Shimmin, Thermal conductivity of nanoparticle suspensions, J. Appl. Phys., 2006, Vol. 99, P. 084308-1–6.

    Article  ADS  Google Scholar 

  • V.Ya. Rudyak, A.A. Belkin, and G.V. Harlamov, Molecular dynamics simulation of nanoparticles diffusion in dense gases and fluids, J. Aeros. Sci., 2000, Vol. 31, Suppl. 1, P. S432–S433.

    Article  Google Scholar 

  • S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Effect of chemical functionalization on thermal transport of carbon nanotube composites, Appl. Phys. Lett., 2004, a, Vol. 85, P. 2229–2231.

    Article  ADS  Google Scholar 

  • S. Shenogin, L.P. Xue, R. Ozisik, P. Keblinski, and D.G. Cahill, Role of thermal boundary resistance on the heat flow in carbon nanotube composites, J. Appl. Phys., 2004, b, Vol. 95, P. 8136–8144.

    Article  ADS  Google Scholar 

  • A.V. Simakin, V.V. Voronov, and G.A. Shafeev, Formation of nanoparticles at laser ablation of solid bodies in fluids, Trans. Prokhorov Inst. Gen Phys. RAS, 2004, Vol. 60, P. 83–107.

    Google Scholar 

  • M. Wagener, B.S. Murty, and B. Gunther, Preparation of metal nanosuspensions by high-pressure DC-sputtering on running fluids, S. Komarnenl, J.C. Parker, H.J. Wollenberger (Eds.), Nanocrystalline and Nanocomposite Materials II, Vol. 457, Materials Research Society, Pittsburgh, PA, 1997, P. 149–154.

    Google Scholar 

  • B.-X. Wang, L.-P. Zhou, and X.-F. Peng, A fractal model for predicting the effective thermal conductivity of fluid with suspension of nanoparticles, Int. J. of Heat and Mass Transfer, 2003, Vol. 46, P. 2665–2672.

    Article  MATH  Google Scholar 

  • L. Wang and X. Wei, Nanofluids: synthesis, heat conduction, and extension, J. Heat Transfer, 2009, Vol. 131, P. 033102-1–033102-7.

    Google Scholar 

  • X. Wang, X. Xu, and S.U.S. Choi, Thermal conductivity of nanoparticle — fluid mixture, J. Thermophysics and Heat Transfer, 1999, Vol. 13, No. 4, P. 474–480.

    Article  Google Scholar 

  • X-Q. Wang and A.S. Mujumbar, Heat Transfer Characteristics of Nanofluids: a Review, Int. J. Thermal Sci., 2007, Vol. 46, P. 1–19.

    Article  MATH  Google Scholar 

  • D.S. Wen and Y.L. Ding, Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), J. Thermophysics and Heat Transfer, 2004, a, Vol. 18, No. 4, P. 481–485.

    Article  Google Scholar 

  • D.S. Wen and Y.L. Ding, Experiment investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer, 2004, b, Vol. 47, P. 5181–5188.

    Article  Google Scholar 

  • D.S. Wen and Y.L. Ding, Experimental investigation into the pool boiling heat transfer of aqueous based γ-Alumina nanofluids, J. of Nanoparticle Research, 2005, a, No. 7, P. 265–274.

  • D.S. Wen and Y.L. Ding, Formulation of nanofluids for natural convective heat transfer applications, Int. J. of Heat and Fluid Flow, 2005, b, Vol. 26, P. 855–864.

    Article  Google Scholar 

  • D.S. Wen and Y.L. Ding, Natural convective heat transfer of suspensions of TiO2 nanoparticles (nanofluids), Transactions of IEEE on Nanotechnology, 2006, No. 5, P. 220–227.

  • H. Xie, H. Lee, W. Youn, and M. Choi, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, J. Appl. Phys., 2003, Vol. 94, No. 8, P. 4967–4971.

    Article  ADS  Google Scholar 

  • H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. of Appl. Phys., 2002, a, Vol. 91, No. 7, P. 4568–4572.

    Article  ADS  Google Scholar 

  • H. Xie, J. Wang, T. Xi, and Y. Liu, Thermal conductivity of suspensions containing nanosized SiC particles, Int. J. Thermophysics, 2002, b, Vol. 23, P. 571–580.

    Article  Google Scholar 

  • Y. Xuan and Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Transfer, 2000, Vol. 21, P. 58–64.

    Article  Google Scholar 

  • L. Xue, P. Keblinski, S.R. Phillpot, S.U.S. Choi, and J.A. Eastman, Effect of fluid layering at the fluid — solid interface on thermal transport, Int. J. Heat Mass Transfer, 2004, Vol. 47, No. 19–20, P. 4277–4284.

    Article  MATH  Google Scholar 

  • S. Yatsuya, Y. Tsukasaki, K. Yamauchi, and K. Mihama, Ultrafine particles produced by vacuum evaporation onto a running oil substrate (VEROS) and the modified method, J. Crystal Growth, 1984, Vol. 70, P. 533–535.

    Article  ADS  Google Scholar 

  • W. Yu and S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. of Nanoparticle Research, 2003, No. 5, P. 167–171.

  • W. Yu, D.M. France, S.U.S. Choi, and J.L. Routbort, Review and Assessment of Nanofluid Technology for Transportation and Other Applications, Argonne National Laboratory, ANL/ESD/07-9, 2007, 78 p.

  • X. Zhang, H. Gu, and M. Fujii, Effective thermal conductivity an thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, J. Appl. Phys., 2006, Vol. 100, No. 4, P. 044325.

    Article  ADS  Google Scholar 

  • X. Zhang, H. Gu, and M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Experimental Thermal and Fluid Sci., 2007, Vol. 31, No. 6, P. 593–599.

    Article  Google Scholar 

  • H. Zhu, Y. Lin, and Y. Yin, A novel one-step chemical method for preparation of copper nanofluids, J. Colloid and Interface Sci., 2004, Vol. 227, P. 100–103.

    Article  Google Scholar 

  • K.P. Zol’nikov, R.I. Kadyrov, I.I. Naumov, S.G. Psakh’e, G.E. Rudenskii, and V.M. Kuznetsov, Possible nonlinear heat pulse propagation of s in solids at Debye temperatures, Technical Phys. Lett., 1999, Vol. 25, No. 3, P. 230–232.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Terekhov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terekhov, V.I., Kalinina, S.V. & Lemanov, V.V. The mechanism of heat transfer in nanofluids: state of the art (review). Part 1. Synthesis and properties of nanofluids. Thermophys. Aeromech. 17, 1–14 (2010). https://doi.org/10.1134/S0869864310010014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864310010014

Key words

Navigation