Skip to main content
Log in

Local search in problems with nonconvex constraints

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Nonconvex optimization problems with an inequality constraint given by the difference of two convex functions (by a d.c. function) are considered. Two methods for finding local solutions to this problem are proposed that combine the solution of partially linearized problems and descent to a level surface of the d.c. function. The convergence of the methods is analyzed, and stopping criterions are proposed. The methods are compared by testing them in a numerical experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. P. Vasil’ev, Optimization Methods (Faktodrial Press, Moscow, 2002) [in Russian].

    Google Scholar 

  2. B. T. Polyak, Introduction to Optimization (Nauka, Moscow, 1983; Optimization Software, New York, 1987).

    MATH  Google Scholar 

  3. I. I. Eremin, Theory of Linear Optimization (Inst. Mat. Mekh. Ural Otd. Ross. Akad. Nauk, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  4. Handbook of Global Optimization, Ed. by R. Horst and P. Pardalos (Kluwer Academic, Dordrecht, 1995).

    MATH  Google Scholar 

  5. R. Horst and H. Tuy, Global Optimization (Deterministic Approaches) (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  6. A. S. Strekalovsky, Elements of Nonconvex Optimization (Nauka, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  7. A. S. Strekalovsky, “Extremal Problems with d.c.-Constraints,” Zh. Vychisl. Mat. Mat. Fiz. 41, 1833–1843 (2001) [Comput. Math. Math. Phys. 41, 1742–1751 (2001)].

    Google Scholar 

  8. A. S. Strekalovsky, “On the Minimization of the Difference of Convex Functions on a Feasible Set,” Zh. Vychisl. Mat. Mat. Fiz. 43, 399–409 (2003) [Comput. Math. Math. Phys. 43, 380–390 (2003)].

    Google Scholar 

  9. A. S. Strekalovsky, “Minimizing Sequences in Problems with d.c. Constraints,” Zh. Vychisl. Mat. Fiz. 45, 435–447 (2005) [Comput. Math. Math. Phys. 45, 418–429 (2005)].

    MATH  Google Scholar 

  10. A. S. Strekalovsky and T. V. Yakovleva, “On Local and Global Search in Nonconvex Optimization Problems,” Avtom. Telemekh., No. 3, 23–34 (2004).

  11. A. S. Strekalovsky and T. V. Yakovleva, “Modification Rosen’s Method in an Inverse Convex Problem,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 12, 70–75 (2005).

  12. V. I. Zabotin and Yu. A. Chernyaev, “A Generalization of the Gradient Projection Method to Extremum Value Problems with Preconvex Constraints,” Zh. Vychisl. Mat. Mat. Fiz. 41, 367–373 (2001) [Comput. Math. Math. Phys. 41, 340–346 (2001)].

    MathSciNet  Google Scholar 

  13. J. B. Rosen, “Iterative Solution of Nonlinear Optimal Control Problems,” J. SIAM Control 4(1), 223–244 (1966).

    Article  MATH  Google Scholar 

  14. R. R. Meyer, “The Validity of a Family of Optimization Methods,” J. SIAM Control 8(1), 41–54 (1970).

    Article  MATH  Google Scholar 

  15. T. S. Motzkin and E. G. Straus, “Maxima for Graphs and a New Proof of a Theorem of Turan,” Canad. J. Math. 17, 533–540 (1965).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.V. Gruzdeva, A.S. Strekalovsky, 2007, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2007, Vol. 47, No. 3, pp. 397–413.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruzdeva, T.V., Strekalovsky, A.S. Local search in problems with nonconvex constraints. Comput. Math. and Math. Phys. 47, 381–396 (2007). https://doi.org/10.1134/S0965542507030049

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542507030049

Keywords

Navigation