Skip to main content
Log in

Terminal control of boundary models

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A terminal optimal control problem for finite-dimensional static boundary models is formulated. The finite-dimensional models determine the initial and terminal states of the plant. The choice of an optimal control drives the plant from one state to another. A saddle-point method is proposed for solving this problem. The convergence of the method in a Hilbert space is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Antipin, “Balanced programming: Gradient-type methods,” Autom. Remote Control 58, 1337–1347 (1997).

    MATH  MathSciNet  Google Scholar 

  2. A. S. Antipin, “Controlled proximal differential systems for saddle problems,” Differ. Equations 28(11), 1846–1861 (1992).

    MATH  MathSciNet  Google Scholar 

  3. A. S. Antipin, “Extra-proximal methods for solving two-person nonzero-sum games,” Math. Program. Ser. B 120, 147–177 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. S. Antipin, “Multicriteria equilibrium programming problems and methods for their solutions,” Optimization 58, 729–753 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. S. Antipin, http://isu.ru/izvestia.

  6. A. S. Antipin, “Solution methods for variational inequalities with coupled constraints,” Comput. Math. Math. Phys. 40, 1239–1254 (2000).

    MATH  MathSciNet  Google Scholar 

  7. J.-P. Aubin and H. Frankowska, Set-Valued Analysis (Birkhäuser, Berlin, 1990).

    MATH  Google Scholar 

  8. F. P. Vasil’ev, Optimization Methods (MTsNMO, Moscow, 2011) [in Russian].

    Google Scholar 

  9. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover, New York, 1999; Fizmatlit, Moscow, 2009).

    Google Scholar 

  10. A. S. Antipin, “The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence,” Comput. Math. Math. Phys. 35, 539–551 (1995).

    MATH  MathSciNet  Google Scholar 

  11. A. S. Antipin, Gradient and Extragradient Approaches to Bilinear Equilibrium Programming (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2002) [in Russian].

    Google Scholar 

  12. A. Antipin, “Two-person game with Nash equilibrium in optimal control problems,” Optim. Lett. 6, 1349–1378 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Antipin, “Gradient approach of computing fixed points of equilibrium problems,” J. Global Optim. 24, 285–309 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. F. Nash, Jr., “Equilibrium points in N-person games,” Proc. Natl. Acad. Sci. USA. 36, 48–49 (1950).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Nikaido and K. Isoda, “Note on noncooperative convex game,” Pacific J. Math. Suppl., 807–815 (1955).

    Google Scholar 

  16. A. S. Antipin and E. V. Khoroshilova, “Linear programming and dynamics,” Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 19(2), 7–25 (2013).

    Google Scholar 

  17. F. P. Vasil’ev, E. V. Khoroshilova, and A. S. Antipin, “Regularized extragradient method for finding a saddle point in an optimal control problem,” Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 17(1), 27–37 (2011).

    Google Scholar 

  18. A. S. Atipin, “Augmented Lagrangian method for optimal control problems with a free right end,” Izv. Irkutsk. Gos. Univ., Ser. Mat. 4(2), 27–44 (2011).

    Google Scholar 

  19. M. S. Nikol’skii, “On the convergence of the gradient projection method in optimal control problems,” in Nonlinear Dynamics and Control (Fizmatlit, Moscow, 2003), Vol. 3 [in Russian].

    Google Scholar 

  20. V. A. Srochko and E. V. Aksenyushkina, http://isu.ru/izvestia

  21. Yu. G. Evtushenko, Optimization and Fast Automatic Differentiation (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2013) [in Russian].

    Google Scholar 

  22. G. M. Korpelevich, “Extragradient method for finding saddle points and other applications,” Ekon. Mat. Metody 12(6), 747–756 (1976).

    MATH  Google Scholar 

  23. A. S. Antipin, “A method for finding saddle points of the augmented Lagrangian function,” Ekon. Mat. Metody 13(3), 560–565 (1977).

    MATH  MathSciNet  Google Scholar 

  24. L. A. Lusternik and V. I. Sobolev, Elements of Functional Analysis (Nauka, Moscow, 1965; Gordon and Breach, New York, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Antipin.

Additional information

Original Russian Text © A.S. Antipin, 2014, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2014, Vol. 54, No. 2, pp. 257–285.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antipin, A.S. Terminal control of boundary models. Comput. Math. and Math. Phys. 54, 275–302 (2014). https://doi.org/10.1134/S096554251402002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251402002X

Keywords

Navigation