Skip to main content
Log in

Domain decomposition method for a model crack problem with a possible contact of crack edges

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The scalar Poisson equation is considered in a domain having a cut with unilateral constraints specified on its edges. An iterative method is proposed for solving the problem. The method is based on domain decomposition and the Uzawa algorithm for finding a saddle point of the Lagrangian. According to the method, the original domain is divided into two subdomains and a linear problem for Poisson’s equation is solved in each of them at every iteration step. The solution in one domain is related to that in the other by two Lagrange multipliers: one is used to match the solutions, and the other, to satisfy the unilateral constraint. Examples of the numerical solution of the problem are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. M. Khludnev, Elasticity Problems in Nonsmooth Domains (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  2. A. M. Khludnev, “Crack Theory with possible contact of crack surfaces,” Usp. Mekh. 3(4), 41–82 (2005).

    Google Scholar 

  3. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations (Clarendon, Oxford, 1999).

    MATH  Google Scholar 

  4. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  5. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

  6. R. Glowinski, J.-L. Lions, and R. Tremolieres, Numerical Analysis of Variational Inequalities (North-Holland, Amsterdam, 1981; Mir, Moscow, 1979).

    MATH  Google Scholar 

  7. G. Bayada, J. Sabil, and T. Sassi, “A Neumann-Neumann domain decomposition algorithm for the Signorini problem,” Appl. Math. Lett. 17(10), 1153–1159 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Danek, I. Hlavacek, and J. Nedomac, “Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity,” Math. Comput. Simul. 68, 271–300 (2005).

    Article  MATH  Google Scholar 

  9. J. Haslinger, R. Jucera, and T. Sassi, “A domain decomposition algorithm for contact problems: Analysis and implementation,” Math. Model. Nat. Phenom. 4(1), 123–146 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Koko, “Uzawa Bloc relaxation domain decomposition method for a two-body frictionless contact problem,” App. Math. Lett. 22(1), 1534–1538.

  11. E. V. Vtorushin, “Numerical investigation of a model problem for the Poisson equation with inequality constraints in a domain with a cut,” J. Appl. Ind. Math. 2(1), 143–150 (2008).

    Article  MathSciNet  Google Scholar 

  12. E. V. Vtorushin, “Numerical investigation of a model problem for deforming an elastoplastic body with a crack under non-penetration condition,” Sib. Zh. Vychisl. Mat. 9(4), 335–344 (2006).

    MATH  Google Scholar 

  13. M. Hintermüller, V. Kovtunenko, and K. Kunisch, “The primal-dual active set method for a crack problem with nonpenetration,” IMA J. Appl. Math. 69, 1–26 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Hintermüller, K. Ito, and K. Kunisch, “The primal-dual active set strategy as a semismooth Newton method,” SIAM J. Optim. 13(2), 865–888 (2003).

    MATH  Google Scholar 

  15. V. A. Kovtunenko, “Numerical simulation of the nonlinear crack problem with nonpenetration,” Math. Meth. Appl. Sci. 27(2), 163–179 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids (WIT, Southampton, 2000).

    Google Scholar 

  17. V. A. Kozlov and A. M. Khludnev, “Asymptotic behavior of the solution to the Poisson equation near a crack tip with nonlinear boundary conditions on the crack faces,” Dokl. Math. 74(3), 865–868 (2006).

    Article  MATH  Google Scholar 

  18. K. Fan, “Minimax theorems,” Proc. Acad. Sci. USA 39, 42–48 (1953).

    Article  MATH  Google Scholar 

  19. J. Céa, Optimisation: Théorie et algorithms (Dunod, Paris, 1971).

    Google Scholar 

  20. K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications (SIAM, Philadelphia, 2008).

    Book  MATH  Google Scholar 

  21. J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéires (Dunod, Paris, 1969; Mir, Moscow, 1972).

    Google Scholar 

  22. F. Hecht, “New development in FreeFem++,” J. Numer. Math. 20(3–4), 251–265 (2012).

    MATH  MathSciNet  Google Scholar 

  23. G. Allaire, Numerical Analysis and Optimization: An Introduction to Mathematical Modeling and Numerical Simulation (Oxford University Press, London, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Rudoy.

Additional information

Original Russian Text © E.M. Rudoy, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 2, pp. 310–321.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudoy, E.M. Domain decomposition method for a model crack problem with a possible contact of crack edges. Comput. Math. and Math. Phys. 55, 305–316 (2015). https://doi.org/10.1134/S0965542515020165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515020165

Keywords

Navigation