Skip to main content
Log in

Transformation of sine-Gordon solitons in models with variable coefficients and damping

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The dynamics of sine-Gordon solitons in the presence of an external force, damping, and a spatially modulated periodic potential is studied. Numerical methods are used to show the possibility of generating localized nonlinear waves of the soliton and breather types. Their evolution is investigated, and the dependences of the amplitude and the oscillation frequency on the parameters of the system are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Encyclopedia of Nonlinear Science, Ed. by A. Scott (Routledge, New York, 2004).

    Google Scholar 

  2. M. A. Shamsutdinov, V. N. Nazarov, I. Yu. Lomakina, et al., Ferro- and Antiferromagnetic Dynamics: Nonlinear Oscillations, Waves, and Solitons (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  3. O. M. Braun and Yu. S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer, Berlin, 2004; Fizmatlit, Moscow, 2008).

    Book  Google Scholar 

  4. T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge Univ. Press, New York, 2010).

    MATH  Google Scholar 

  5. M. B. Fogel, S. E. Trullinger, A. R. Bishop, and J. A. Krumhandl, “Dynamics of sine-Gordon solitons in the presence of perturbations,” Phys. Rev. B 15, 1578–1592 (1977).

    Article  MathSciNet  Google Scholar 

  6. J. P. Currie, S. E. Trullinger, A. R. Bishop, and J. A. Krumhandl, “Numerical simulation of sine-Gordon soliton dynamics in the presence of perturbations,” Phys. Rev. B 15(12), 5567–5580 (1977).

    Article  Google Scholar 

  7. R. H. Goodman, P. J. Holmes, and M. I. Weinstein, “Interaction of sine-Gordon kinks with defects: Phase space transport in a two-mode model,” Physica D: Nonlinear Phenomena 161(1), 21–44 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. A. González, A. Bellorin, and L. E. Guerrero, “Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations,” Phys. Rev. E (Rapid Commun.) 65, 065601 (2002).

    Article  Google Scholar 

  9. S. Nazifkar and K. Javidan, “Collective coordinate analysis for double sine-Gordon model,” Brazil. J. Phys. 40(1), 102–107 (2010).

    Article  Google Scholar 

  10. J. A. González, S. Cuenda, and A. Sánchez, “Kink dynamics in spatially inhomogeneous media: The role of internal modes,” Phys. Rev. E 75, 036611 (2007).

    Article  MathSciNet  Google Scholar 

  11. A. G. Bratsos, “The solution of the two-dimensional sine-Gordon equation using the method of lines,” J. Comput. Appl. Math. 206(1), 251–277 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. L. Fabian, R. Kohl, and A. Biswas, “Perturbation of topological solitons due to sine-Gordon equation and its type,” Commun. Nonlinear Sci. Numer. Simul. 14(4), 1227–1244 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Batiha, M. S. M. Noorani, and I. Hashim, “Numerical solution of sine-Gordon equation by variational iteration method,” Phys. Lett. A 370(5), 437–440 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  14. M. J. Ablowitz, B. M. Herbst, and C. M. Schober, “On the numerical solution of the sine-Gordon equation,” J. Comput. Phys. 131(2), 354–367 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  15. D. I. Paul, “Soliton theory and the dynamics of a ferromagnetic domain wall,” J. Phys. C: Solid State Phys. 12, 585–593 (1979).

    Article  Google Scholar 

  16. C. J. K. Knight, G. Derks, A. Doelman, and H. Susanto, “Stability of stationary fronts in a nonlinear wave equation with spatial inhomogeneity,” J. Differ. Equations 254(2), 408–468 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Piette, W. J. Zakrzewski, and J. Brand, “Scattering of topological solitons on holes and barriers,” J. Phys. A: Math. General 38(48), 10403–10412 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Piette and W. J. Zakrzewski, “Scattering of sine-Gordon kinks on potential wells,” J. Physics A: Math. Theor. 40, 5995–6010 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  19. E. G. Ekomasov and A. M. Gumerov, “Simulation of the interaction of nonlinear waves in the sine-Gordon model for materials with defects,” Perspektiv. Mater., No. 12, 104–108 (2011).

    Google Scholar 

  20. E. G. Ekomasov, Sh. A. Azamatov, and R. R. Murtazin, “Study of excitation and evolution of soliton- and breaser-type magnetic inhomogeneities in magnets with local anisotropy inhomogeneities,” Fiz. Metallov Metalloved. 105(4), 341–349 (2008).

    Google Scholar 

  21. E. G. Ekomasov, A. M. Gumerov, R. R. Murtazin, et al., “Excitation of high-amplitude localized nonlinear waves as a result of interaction of kink with attractive impurity in sine-Gordon equation,” arXiv:1307.3470 [nlin.PS] (2013).

    Google Scholar 

  22. E. G. Ekomasov, A. M. Gumerov, and R. R. Murtazin, “Combined effect of impurities on the dynamics of kinks in the modified sine-Gordon equation,” Komp’yut. Issled. Model. 5(3), 403–412 (2013).

    Google Scholar 

  23. A. M. Gumerov, E. G. Ekomasov, F. K. Zakir’yanov, and R. V. Kudryavtsev, “Structure and properties of fourkink multisolitons of the sine-Gordon equation,” Comput. Math. Math. Phys. 54(3), 491–504 (2014).

    Article  MathSciNet  Google Scholar 

  24. E. G. Ekomasov, A. M. Gumerov, and I. I. Rakhmatullin, “Numerical simulation of pinning and nonlinear dynamics of domain walls in ferromagnets with defects,” Vestn. Bashkir. Univ. 15(3), 564–566 (2010).

    Google Scholar 

  25. S. W. Goatham, L. E. Mannering, R. Hann, and S. Krusch, “Dynamics of multi-kinks in the presence of wells and barriers,” Acta Phys. Polonica B 42(10), 2087–2106 (2011).

    Article  Google Scholar 

  26. S. P. Popov, “Influence of dislocations on kink solutions of the double sine-Gordon equation,” Comput. Math. Math. Phys. 53(12), 1891–1899 (2013).

    Article  Google Scholar 

  27. E. G. Ekomasov, R. R. Murtazin, O. B. Bogomazova, and A. R. Al’mukhametova, “Nonlinear dynamics of sine-Gordon kinks in the presence of localized spatial modulation of system’s parameters,” Vestn. Bashkir. Univ. 17(2), 847–852 (2012).

    Google Scholar 

  28. E. G. Ekomasov, R. R. Murtazin, O. B. Bogomazova, and A. M. Gumerov, “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange,” J. Magn. Magn. Mater. 339, 133 (2013).

    Article  Google Scholar 

  29. A. Mohebbi and M. Dehghan, “High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods,” Math. Comput. Model. 51(5–6), 537–549 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  30. P. J. Van der Houwen, B. P. Sommeijer, and N. H. Cong, “Parallel diagonally implicit Runge-Kutta-Nyström Methods,” Appl. Numer. Math. 9(2), 111–131 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Dehghan and A. Shokri, “Numerical method for one-dimensional nonlinear sine-gordon equation using collocation and radial basis functions,” Numer. Methods Partial Differ. Equations 24(2), 687–698 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  32. A. G. Bratsos and E. H. Twizell, “The solution of the sine-Gordon equation using the method of lines,” Int. J. Comput. Math. 61(3–4), 271–292 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  33. Z. Soori and A. Aminataei, “The spectral method for solving sine-Gordon equation using a new orthogonal polynomial,” Appl. Math. 2012, Article ID 462731 (2012) doi:10.5402/2012/462731.

  34. G. L. Alfimov, W. A. B. Evans, and L. Vázquez, “On radial sine-Gordon breathers,” Nonlinearity 13, 1657–1680 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  35. S. P. Popov, “Application of the quasi-spectral Fourier method to soliton equations,” Comput. Math. Math. Phys. 50(12), 2064–2070 (2010).

    Article  MathSciNet  Google Scholar 

  36. Ma Li-Min and Wu Zong-Min, “A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation,” Chinese Phys. 18(8), 3099.

  37. A. G. Bratsos, “A numerical method for the one-dimensional sine-Gordon equation,” Numer. Methods Partial Differ. Equations 24(3), 833–844 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Q. M. Khaliq, B. Abukhodair, Q. Sheng, and M. S. Ismail, “A predictor-corrector scheme for the sine-Gordon equation,” Numer. Methods Partial Differ. Equations 16(2), 133–146 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  39. A. Akgul and M. Inc, “Numerical solution of one-dimensional sine-Gordon equation using reproducing kernel Hilbert space method,” arXiv:1304.0534 [math.NA] (2013), http://arxiv.org/abs/1304.0534v1.

    Google Scholar 

  40. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

    Google Scholar 

  41. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  42. S. E. Koonin, Computational Physics: FORTRAN Version (Addison-Wesley, Redwood City, Ca, 1990; Mir, Moscow, 1992).

    MATH  Google Scholar 

  43. L. A. Ferreira, B. Piette, and W. J. Zakrzewski, “Wobbles and other kink-breather solutions of sine-Gordon model,” Phys. Rev. E 77, 036616 (2008).

    Article  Google Scholar 

  44. G. Kalberman, “The sine-Gordon wobble,” J. Phys. A: Math. Gen. 37, 11603–11612 (2004).

    Article  Google Scholar 

  45. T. Sh. Kal’menov and D. Suragan, “Transfer of Sommerfeld radiation conditions to the boundary of a bounded domain,” Vychisl. Mat. Mat. Fiz. 52(6), 1063–1068 (2012).

    MATH  Google Scholar 

  46. W. F. Chang and G. A. McMechan, “Absorbing boundary conditions for 3-D acoustic and elastic finite-difference calculations,” Bull. Seismol. Soc. Am. 79(1), 211–218 (1989).

    Google Scholar 

  47. B. Engquist and A. Majda, “Radiation boundary conditions for acoustic and elastic wave calculations,” Commun. Pure Appl. Math. 32(3), 313–357 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  48. A. A. Konstantinov, V. P. Maslov, and A. M. Chebotarev, “Shift of the boundary conditions for partial differential equations,” USSR Comput. Math. Math. Phys. 28(6), 111–121 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  49. R. L. Higdon, “Numerical absorbing boundary conditions for the wave equation,” Math. Comput. 49(179), 65–90 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  50. E. S. Shikhovtseva and V. N. Nazarov, “Effect of the nonlinear longitudinal compression on the conformational dynamics of the bistable quasi-one-dimensional macromolecules,” JETP Lett. 86(8), 497–501 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gumerov.

Additional information

Original Russian Text © A.M. Gumerov, E.G. Ekomasov, R.R. Murtazin, V.N. Nazarov, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 4, pp. 631–640.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumerov, A.M., Ekomasov, E.G., Murtazin, R.R. et al. Transformation of sine-Gordon solitons in models with variable coefficients and damping. Comput. Math. and Math. Phys. 55, 628–637 (2015). https://doi.org/10.1134/S096554251504003X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251504003X

Keywords

Navigation