Skip to main content
Log in

Dynamic method of multipliers in terminal control

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A method for solving the terminal control problem with a fixed time interval and fixed initial conditions is proposed. The solution to the boundary value problem posed at the right end of the time interval determines the terminal conditions. This boundary value problem is a finite-dimensional convex programming problem. The dynamics of the terminal control problem is described by a linear controllable system of differential equations. This system is interpreted as a conventional system of linear equality constraints. Then the terminal control problem can be regarded as a dynamic convex programming problem posed in an infinite-dimensional functional Hilbert space. In this paper, the functional problem is treated as a saddle-point problem rather than optimization problem. Accordingly, a saddle-point approach to solving the problem is proposed. This approach is based on maximizing the dual function generated by the modified Lagrangian function of the convex programming problem posed in the functional space. The convergence of the proposed methods is also proved in the functional space. This convergence has the additional property of being monotone in norm with respect to controls, phase trajectories, adjoint functions, as well as finite-dimensional terminal variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover, New York, 1999; Fizmatlit, Moscow, 2009).

    Google Scholar 

  2. F. P. Vasil’ev, Optimization Methods (MTsNMO, Moscow, 2011), Vols. 1, 2 [in Russian].

    Google Scholar 

  3. A. S. Antipin, “Equilibrium programming: Models and solution methods,” Izv. Irkutsk. Gos. Univ. Ser. Mat. 2(1), 8–36 (2009).

    Google Scholar 

  4. A. S. Antipin, “Two-person game with Nash equilibrium in optimal control problems,” Optim. Lett. 6(7), 1349–1378 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. S. Antipin and E. V. Khoroshilova, “Linear programming and dynamics,” Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 19(2), 7–25 (2013).

    Google Scholar 

  6. A. S. Antipin and E. V. Khoroshilova, “Optimal control with coupled initial and terminal conditions,” Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 20(2), 13–28 (2014).

    Google Scholar 

  7. A. S. Antipin, “Terminal control of boundary models,” Comput. Math. Math. Phys. 54(2), 275–302 (2014).

    Article  MathSciNet  Google Scholar 

  8. A. S. Antipin and O. O. Vasilieva, “Augmented Lagrangian method for optimal control problems,” Analysis, Modeling, Optimization, and Numerical Techniques, Ser. Proc. Math. Stat., Ed. by G. Olivar and O. Vasilieva (Springer, Switzerland, 2015), Vol. 121, pp. 1–36.

    Chapter  Google Scholar 

  9. A. S. Antipin, “Convex programming method using a symmetric modification of the Lagrangian functional,” Ekon. Mat. Metody 12(6), 1164–1173 (1976).

    MATH  Google Scholar 

  10. A. S. Antipin, “A method for finding saddle points of the augmented Lagrangian function,” Ekon. Mat. Met. 13(3), 560–565 (1977).

    MATH  MathSciNet  Google Scholar 

  11. E. G. Gol’shtein and N. V. Tret’yakov, Augmented Lagrangians: Theory and Optimization Methods (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  12. B. T. Polyak, Introduction to Optimization (Nauka, Moscow, 1983; Optimization Software, New York, 1987).

    MATH  Google Scholar 

  13. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1976; Gordon and Breach, New York, 1986).

    Google Scholar 

  14. A. S. Antipin, “Balanced programming: Gradient-type methods,” Autom. Remote Control 58(8), 1337–1347 (1997).

    MATH  MathSciNet  Google Scholar 

  15. A. S. Antipin, “Equilibrium programming: Proximal methods,” Comput. Math. Math. Phys. 37(11), 1285–1296 (1997).

    MathSciNet  Google Scholar 

  16. A. S. Antipin, “Extra-proximal methods for solving two-person nonzero-sum games,” Math. Program. 120(1) (2009).

    Google Scholar 

  17. R. T. Rockafellar, “Augmented Lagrangians and applications of the proximal point algorithm in convex programming,” Math. Oper. Res. 1(2), 97–116 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  18. W. W. Hager, “Multiplier methods for nonlinear optimal control,” SIAM J. Numer. Anal. 27(4), 1061–1080 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  19. O. O. Vasilieva, “The search of equilibrium strategies for controlled boundary value problem,” Asian J. Control 3(1), 50–56 (2001).

    Article  Google Scholar 

  20. O. O. Vasilieva, “Search for equilibrium controls in controlled boundary value problems,” Izv. Irkutsk. Gos. Univ. Ser. Mat. 1(1), 70–85 (2007).

    Google Scholar 

  21. O. O. Vasilieva and O. V. Vasil’ev, “On the search for equilibrium controls in an m-person differential game,” Russ. Math. 44(12), 7–12 (2000).

    MathSciNet  Google Scholar 

  22. L. A. Lusternik and V. I. Sobolev, Elements of Functional Analysis (Nauka, Moscow, 1965; Gordon and Breach, New York, 1968).

    Google Scholar 

  23. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis (Springer-Verlag, Berlin, 1998).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Antipin.

Additional information

Original Russian Text © A.S. Antipin, O.O. Vasilieva, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 5, pp. 776–797.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipin, A.S., Vasilieva, O.O. Dynamic method of multipliers in terminal control. Comput. Math. and Math. Phys. 55, 766–787 (2015). https://doi.org/10.1134/S096554251505005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251505005X

Keywords

Navigation