Skip to main content
Log in

Numerical simulation of dynamic processes in biomechanics using the grid-characteristic method

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Results of the numerical simulation of mechanical processes occurring in biological tissues under dynamic actions are presented. The grid-characteristic method on unstructured grids is used to solve the system of equations of mechanics of deformable solids; this method takes into account the characteristic properties of the constitutive system of partial differential equations and produces adequate algorithms on interfaces between media and on the boundaries of integration domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. B. Petrov, “On the numerical modeling of biomechanical processes in medical practice,” Inf. Tekhnol. Vychisl. Sist., Nos. 1–2, 102–111 (2003).

    Google Scholar 

  2. K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Numerical Methods (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  3. A. V. Vasyukov, K. A. Beklemysheva, A. S. Ermakov, A. S. Dzyuba, and V. I. Golovan, “Numerical simulation of dynamic processes under low-velocity impact against a composite stringer panel,” Mat. Model. 26, 95–110 (2014).

    Google Scholar 

  4. O. M. Belotserkovskii, Numerical Simulation in Continuum Mechanics (Fizmatlit, Moscow, 1994) [in Russian].

    Google Scholar 

  5. I. E. Kvasov and I. B. Petrov, “High-performance computer simulation of wave processes in geological media in seismic exploration,” Comput. Math. Math. Phys. 52, 302–313 (2012).

    Article  Google Scholar 

  6. O. M. Belotserkovskii, A. V. Vinogradov, and S. V. Shebeko, “Statement of the problem of the analysis of the cardiac infarction clinical course,” in Computer Models and Advances in Medicine (Nauka, Moscow, 2001), pp. 28–91 [in Russian].

    Google Scholar 

  7. A. S. Glazunov, “Methods for evaluation of myocardium functional state to reveal hidden threats of a sudden cardiac death based on computer cardiography,” in Computer Models and Advances in Medicine (Nauka, Moscow, 2001), pp. 101–114 [in Russian].

    Google Scholar 

  8. A. S. Kholodov and A. V. Evdokimov, “Methods for the calculation of global blood flow in a human organism using heterogeneous computational models,” in Medicine in the Mirror of Information Science (Nauka, Moscow, 2008), pp. 124–144 [in Russian].

    Google Scholar 

  9. I. V. Ashmetkov, A. Ya. Bunicheva, V. A. Lukshin, V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, A. B. Khrulenko, “Mathematical modeling of blood flow using the software package CVSS,” in Medicine in the Mirror of Information Science (Nauka, Moscow, 2008), pp. 194–218 [in Russian].

    Google Scholar 

  10. G. T. Guriya, A. I. Lobanov, and T. K. Starozhilova, “Modeling the growth of a detached thrombus in the near wall flow,” in Medicine in the Mirror of Information Science (Nauka, Moscow, 2008), pp. 250–263 [in Russian].

    Google Scholar 

  11. Yu. V. Vasilevskii, S. S. Simakov, V. I. Salamatova, I. V. Ivanov, and T. Dobronravova, “Numerical simulation of blood flow in the network pathological vessels,” Ros. Zh. Chisl. Anal. Mat. Model. 26, 605–622 (2011).

    Google Scholar 

  12. A. V. Kolobov, A. I. Lobanov, T. P. Pimenova, A. A. Polezhaev, and G. I. Solyanik, “The effect of a spatial heterogeneous environment on the growth of invasive tumors: Analysis using mathematical modeling,” in Medicine in the Mirror of Information Science (Nauka, Moscow, 2008), pp. 188–223 [in Russian].

    Google Scholar 

  13. A. S. Kholodov, “Dynamical models of external respiration and blood circulation taking into account their interrelations and transport of substances,” in Computer Models and Advances in Medicine (Nauka, Moscow, 2001), pp. 127–163 [in Russian].

    Google Scholar 

  14. A. I. D’yachenko, “Investigation of a single-component model of lung mechanics,” in Medical Biomechanics (Riga, 1986), Vol. 1, pp. 147–152 [in Russian].

    Google Scholar 

  15. N. N. Balabanovskii, A. V. Bubnov, A. S. Obukhov, and I. B. Petrov, “Calculation of dynamic processes in the eye in the course of cataract extraction,” Mat. Model. 15, 37–44 (2003).

    Google Scholar 

  16. D. S. Zhukov, I. B. Petrov, and A. G. Tormasov, “Numerical and experimental investigation of the fracture of solids in a fluid,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 183–190 (1991).

    Google Scholar 

  17. G. I. Marchuk, Mathematical Models In Immunology (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  18. O. V. Aslanida and O. A. Mornev, “Echo in excitable heart fibers,” Mat. Model. 11 (9), 3–22 (1999).

    MathSciNet  Google Scholar 

  19. R. A. Pashkov and I. B. Petrov, “Modeling impulse propagation in Purkinje fibers,” Obrabotka Inf. Model., 171–181 (2002).

    Google Scholar 

  20. O. V. Aslanida and O. A. Mornev, “Can nervous impulses be reflected?” Pis’ma Zh. Eksp. Teor. Fiz. 65, 553–558 (1997).

    Google Scholar 

  21. R. A. Pashkov, “Numerical simulation of skin wound contracture,” Prots. Metody Obrabotki Inf. 194–200 (2005).

    Google Scholar 

  22. S. A. Regirer, Lectures on Biomechanics (Mosk. Gos. Univ., Moscow, 1980) [in Russian].

    Google Scholar 

  23. V. I. Kondaurov and A. V. Nikitin, “Finite strains of viscoelastic muscle tissue,” J. Appl. Math. Mech. 51, 346–353 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. A. Polezhaev, R. A. Pashkov, and A. I. Lobanov, and I. B. Petrov, “Spatial patterns formed by chemitactic bacteria Escheribia Coli,” Int. J. Development Biology 50, 309–314 (2006).

    Article  Google Scholar 

  25. Yu. I. Zhuravlev, I. B. Petrov, and V. V. Ryazanov, “Methods for discrete diagnostics and analysis of medical data,” in Medicine in the Mirror of Information Science (2008), pp. 5–21.

    Google Scholar 

  26. P. I. Agapov, O. M. Belotserkovskii, and I. B. Petrov, “Numerical Simulation of the Consequences of a Mechanical Action on a Human Brain under a Skull Injury,” Comput. Math. Math. Phys. 46, 1629–1638 (2006).

    Article  MathSciNet  Google Scholar 

  27. V. M. Klyuzhev, A. V. Lisitskii, and O. M. Kutanina, “On the way to making psycodiagonistics and psycoreactions impersonal,” in Computer and Brain: New Tehnologies (2005), pp. 313–318.

    Google Scholar 

  28. D. V. Kolyadin, A. V. Lisitskii, and I. B. Petrov, “On the application of recognition techniques for determining personal psychological characteristics,” in Medicine in the Mirror of Information Science 34–46 (2008), pp. 34–46.

    Google Scholar 

  29. V. Novatskii, Elasticity Theory (Mir, Moscow, 1975) [in Russian].

    Google Scholar 

  30. L. I. Sedov, L. I. Sedov, A Course in Continuum Mechanics, Vol. 1 (Nauka, Moscow, 1970; Wolters-Noordhoff, Groningen, 1971).

    MATH  Google Scholar 

  31. F. B. Chelnokov, “An explicit representation of grid-characteristic schemes for the elasticity equations in the twoand three-dimensional spaces,” Mat. Model. 18 (6), 96–108 (2006).

    MathSciNet  MATH  Google Scholar 

  32. I. B. Petrov and A. V. Favorskaya, “A library of high-order interpolation on unstructured triangular and tetrahedral grids,” Inf. Tekhnol., No. 9, 30–32 (2011).

    Google Scholar 

  33. R. P. Fedorenko, Introduction to Computational Physics (Mosk. Fiz.-Tekhn. Inst., Moscow, 1994) [in Russian].

    Google Scholar 

  34. I. B. Petrov and A. S. Kholodov, “On the regularization of discontinuous numerical solutions to hyperbolic equations,” Zh. Vychisl. Mat. Mat. Fiz. 24 (8), 1172–1188 (1984).

    MathSciNet  Google Scholar 

  35. I. B. Petrov and A. S. Kholodov, “Numerical investigation of some dynamic problems in mechanics of deformable solids using the grid-characteristic method,” Zh. Vychisl. Mat. Mat. Fiz. 24 (5), 722–739 (1984).

    MathSciNet  MATH  Google Scholar 

  36. P. I. Agapov, O. M. Belotserkovskii, I. A. Klimov, V. M. Klyuzhev, and I. B. Petrov, “A systemic approach to the recovery of the motivational and emotional shape of a person after a craniocerebral injury: Experience in the combination of medicine and information science. Combating stress: Stress mechanisms under extreme conditions,” in Collection of Papers of the Symposium Devoted to the 75th Anniversary of the Military Medicine Research Institute, Ed. by I. B. Umanov (2005), pp. 150–152 [in Russian].

    Google Scholar 

  37. M. H. A. Claessens, “Finite element modeling of the human head under impact conditions,” Ph.D. thesis, Eindhoven University of Technology (1997).

    Google Scholar 

  38. Y. V. Bolotskikh, A. V. Vasyukov, and I. B. Petrov, “Modeling of dynamic problems in biomechanics,” Math. Model. Nat. Phenom. 6 (7), 70–81 (2011).

    Article  MathSciNet  Google Scholar 

  39. C. Zhou, T. B. Khalil, and A. I. King, “A new model comparing impact responses of the homogeneous and inhomogeneous human brain,” in Proc. of the 39th Stapp Car Crash Conf., Society of Automotive Engineers, 1995, pp. 121–137.

    Google Scholar 

  40. C. Chu, M. Lin, H. M. Huang, and M. C. Lee, “Finite element analysis of cerebral contusion,” J. Biomechanics 27, 187–194 (1994).

    Article  Google Scholar 

  41. P. I. Begun and P. N. Afonin, Simulation in Biomechanics (Vysshaya shkola, Moscow, 2004) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. A. Beklemysheva, A. V. Vasyukov or I. B. Petrov.

Additional information

Original Russian Text © K.A. Beklemysheva, A.V. Vasyukov, I.B. Petrov, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 8, pp. 1380–1390.

In blessed memory of Professor A.P. Favorskii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beklemysheva, K.A., Vasyukov, A.V. & Petrov, I.B. Numerical simulation of dynamic processes in biomechanics using the grid-characteristic method. Comput. Math. and Math. Phys. 55, 1346–1355 (2015). https://doi.org/10.1134/S0965542515080047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515080047

Keywords

Navigation