Skip to main content
Log in

Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters of given sizes (cardinalities) minimizing the sum (over both clusters) of the intracluster sums of squared distances from the elements of the clusters to their centers is considered. It is assumed that the center of one of the sought clusters is specified at the desired (arbitrary) point of space (without loss of generality, at the origin), while the center of the other one is unknown and determined as the mean value over all elements of this cluster. It is shown that unless P = NP, there is no fully polynomial-time approximation scheme for this problem, and such a scheme is substantiated in the case of a fixed space dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bern and D. Eppstein, “Approximation algorithms for geometric problems,” in Approximation Algorithms for NP-Hard Problems, Ed. by D. S. Hochbaum (PWS, Boston, 1997), pp. 296–345.

    Google Scholar 

  2. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning (Springer Science, New York, 2013).

    Book  MATH  Google Scholar 

  3. M. C. Bishop, Pattern Recognition and Machine Learning (Springer Science, New York, 2006).

    MATH  Google Scholar 

  4. P. Flach, Machine Learning: The Art and Science of Algorithms That Make Sense of Data (Cambridge University Press, New York, 2012).

    Book  MATH  Google Scholar 

  5. C. Steger, M. Ulrich, and C. Wiedemann, Machine Vision Algorithms and Applications (Cambridge Univ. Press, New York, 2010).

    Google Scholar 

  6. S. Kaiser, Biclustering: Methods, Software, and Application (Faculty of Math. Comput. Sci. Stat., Munich, 2011).

    Google Scholar 

  7. A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recogn. Lett. 31 8, 651–666 (2010).

    Article  Google Scholar 

  8. A. V. Kel’manov and A. V. Pyatkin, “On the complexity of a search for a subset of “similar” vectors,” Dokl. Math 78 1, 574–575 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Kh. Gimadi, A. V. Kel’manov, M. A. Kel’manova, and S. A. Khamidullin, “A posteriori detection of a quasiperiodic fragment with a given number of repetitions in a numerical sequence,” Sib. Zh. Ind. Mat. 9 1, 55–74 (2006).

    MathSciNet  MATH  Google Scholar 

  10. E. Kh. Gimadi, A. V. Kel’manov, M. A. Kel’manova, and S. A. Khamidullin, “A posteriori detecting a quasiperiodic fragment in a numerical sequence,” Pattern Recogn. Image Anal. 18 1, 30–42 (2008).

    Article  MATH  Google Scholar 

  11. A. V. Kel’manov, “Off-line detection of a quasi-periodically recurring fragment in a numerical sequence,” Proc. Steklov Inst. Math. 263, Suppl. 2, 84–92 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. V. Dolgushev and A. V. Kel’manov, “An approximation algorithm for solving a problem of cluster analysis,” J. Appl. Ind. Math. 5 4, 551–558 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. V. Kel’manov and V. I. Khandeev, “Randomized algorithm for two-cluster partition of a set of vectors,” Comput. Math. Math. Phys. 55 2, 330–339 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness of Euclidean sum-of-squares clustering,” Machine Learning 75 2, 245–248 (2009).

    Article  Google Scholar 

  15. J. B. MacQueen, “Some methods for classification and analysis of multivariate observations,” Proceedings of the 5th Berkeley Symposium of Mathematical Statistics and Probability (Univ. of California Press, Berkeley, 1967), Vol. 1, pp. 281–297.

    Google Scholar 

  16. M. Rao, “Cluster analysis and mathematical programming,” J. Am. Stat. Assoc. 66, 622–626 (1971).

    Article  MATH  Google Scholar 

  17. A. V. Kel’manov and A. V. Pyatkin, “Complexity of certain problems of searching for subsets of vectors and cluster analysis,” Comput. Math. Math. Phys. 49 11, 1966–1971 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. V. Kel’manov, “On the complexity of some data analysis problems,” Comput. Math. Math. Phys. 50 11, 1941–1947 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. V. Kel’manov, “On the complexity of some cluster analysis problems,” Comput. Math. Math. Phys. 51 11, 1983–1988 (2011).

    Article  MathSciNet  Google Scholar 

  20. A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, and A. V. Pyatkin, “The problem of finding a subset of vectors with the maximum total weight,” J. Appl. Ind. Math. 2 1, 32–38 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. V. Kel’manov and A. V. Pyatkin, “NP-completeness of some problems of choosing a vector subset,” J. Appl. Ind. Math. 5 3, 352–357 (2011).

    Article  MathSciNet  Google Scholar 

  22. A. V. Kel’manov and V. I. Khandeev, “An exact pseudopolynomial algorithm for a problem of the two-cluster partitioning of a set of vectors,” J. Appl. Ind. Math. 9 4, 497–502 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. V. Kel’manov and V. I. Khandeev, “A 2-approximation polynomial algorithm for a clustering problem,” J. Appl. Ind. Math. 7 4, 515–521 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. V. Kel’manov and A. V. Pyatkin, “On a version of the problem of choosing a vector subset,” J. Appl. Ind. Math. 3 4, 447–455 (2009).

    Article  MathSciNet  Google Scholar 

  25. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).

    MATH  Google Scholar 

  26. A. V. Dolgushev, A. V. Kel’manov, and V. V. Shenmaier, “A PTAS for a problem of cluster analysis,” Proceedings of the 9th International Conference on Intelligent Information Processing, Budva, Montenegro (Torus, Moscow, 2012), pp. 242–244.

    Google Scholar 

  27. V. V. Vazirani, Approximation Algorithms (Springer, Berlin, 2001).

    MATH  Google Scholar 

  28. A. V. Kel’manov and S. M. Romanchenko, “An FPTAS for a vector subset search problem,” J. Appl. Ind. Math. 8 3, 329–336 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Wirth, Algorithms + Data Structures = Programs (Prentice Hall, New Jersey, 1976).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kel’manov.

Additional information

Original Russian Text © A.V. Kel’manov, V.I. Khandeev, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 2, pp. 332–340.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kel’manov, A.V., Khandeev, V.I. Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem. Comput. Math. and Math. Phys. 56, 334–341 (2016). https://doi.org/10.1134/S0965542516020111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516020111

Keywords

Navigation