Skip to main content
Log in

A Method for Numerical Simulation of Haline Convective Flows in Porous Media as Applied to Geology

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A numerical code for simulating haline convective flows in porous media based on the finite difference method on a staggered nonuniform grid is developed. The mathematical model includes the equations of continuity, Darcy, and transport of contaminants with variable properties of the solid and fluid phases. The convective term in the convection–diffusion equation is approximated using the QUICK scheme. The code is tested using the problem of the concentration step motion as an example. A numerical solution of the onset and development of haline convection in a semi-infinite porous (homogeneous or inhomogeneous) domain with a contaminant source on the upper boundary is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. J. O‘Sullivan, K. Pruess, and M. J. Lippmann, “State of the art geothermal reservoir simulation,” Geothermics 30, 395–429 (2001).

    Article  Google Scholar 

  2. J. Lee, K.-I. Kim, K.-B. Min, and J. Rutqvist, “TOUGH-UDEC: A simulator for coupled multiphase fluid flows, heat transfers and discontinuous deformations in fractured porous media,” Comput. Geosciences 126, 120–130 (2019).

    Article  Google Scholar 

  3. A. A. Afanasyev and O. E. Melnik, “Numerical simulation of formation of a concentrated brine lens subject to magma chamber degassing,” Fluid Dynam., 52, 416–423 (2017).

    Article  MathSciNet  Google Scholar 

  4. A. A. Lyupa, D. N. Morozov, M. A. Trapeznikova, B. N. Chetverushkin, and N. G. Churbanov, “Three phase filtration modeling by explicit methods on hybrid computer systems,” Math. Models Comput. Simul. 6, 551–559 (2014).

    Article  MathSciNet  Google Scholar 

  5. M. A. Abdelhafez and V. G. Tsybulin, “Numerical simulation of convective motion in an anisotropic porous medium and cosymmetry conservation,” Comput. Math. Math. Phys. 57, 1706–1719 (2017).

    Article  MathSciNet  Google Scholar 

  6. A. Riaz, M. Hesse, H. A. Tchelepi, and F. M. Orr, “Onset of convection in a gravitationally unstable diffusive boundary layer in porous media,” J. Fluid Mech. 548, 87–111 (2006).

    Article  MathSciNet  Google Scholar 

  7. R. Farajzadeh, H. Samili, P. L. J. Zitha, and H. Bruining, “Numerical simulation of density-driven natural convection in porous media with application for CO\(_{2}\) injection projects,” Int. J. Heat Mass Transfer 50, 5054–5064 (2007).

    Article  Google Scholar 

  8. M. Bestehorn and A. Firoozabadi, “Effect of fluctuations on the onset of density-driven convection in porous media,” Phys. Fluids. 24, 114102 (2012).

    Article  Google Scholar 

  9. E. B. Soboleva and G. G. Tsypkin, “Regimes of haline convection during the evaporation of groundwater containing a dissolved admixture,” Fluid Dynam. 51, 364–371 (2016).

    Article  MathSciNet  Google Scholar 

  10. M. Paoli, F. Zonta, and A. Soldati, “Dissolution in anisotropic porous media: Modeling convection regimes from onset to shutdown,” Phys. Fluids. 29, 026601 (2017).

    Article  Google Scholar 

  11. E. B. Soboleva, “Density-driven convection in an inhomogeneous geothermal reservoir,” Int. J. Heat Mass Transfer 127 (C), 784–798 (2018).

    Article  Google Scholar 

  12. D. A. Nield and A. Bejan, Convection in Porous Media (Springer, New York, 2006).

    MATH  Google Scholar 

  13. J. Bear J. and A. Cheng, Modeling Groundwater Flow and Contaminant Transport (Springer, New York, 2010).

  14. N. N. Kalitkin, Numerical methods (BKhV-Peterburg, St. Petersburg, 2011) [in Russian].

  15. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Convection–Diffusion Problems (Librokom, Moscow, 2015) [in Russian].

    Google Scholar 

  16. P. N. Vabishchevich and P. E. Zakharov, “Alternating triangular schemes for convection–diffusion problems,” Comput. Math. Math. Phys. 56, 576–592 (2016).

    Article  MathSciNet  Google Scholar 

  17. P. P. Matus and Le Minh Hieu, “Difference schemes on nonuniform grids for the two-dimensional convection–diffusion equation,” Comput. Math. Math. Phys. 57, 1994–2004 (2017).

    Article  MathSciNet  Google Scholar 

  18. S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980).

    MATH  Google Scholar 

  19. E. B. Soboleva, “Method of numerical investigation of saline groundwater dynamics,” Mat. Model. 26 (2), 50–64 (2014).

    MATH  Google Scholar 

  20. E. B. Soboleva and G. G. Tsypkin, “Numerical simulation of convective flows in a soil during evaporation of water containing a dissolved admixture,” Fluid Dynam. 49, 634–644 (2014).

    Article  MathSciNet  Google Scholar 

  21. E. Soboleva, “Numerical investigations of haline-convective flows of saline groundwater,” J. Phys., Conf. Ser. 891, 012104 (2017).

    Article  Google Scholar 

  22. E. Soboleva, “Numerical simulation of haline convection in geothermal reservoirs,” J. Phys., Conf. Ser. 891, 012105 (2017).

    Article  Google Scholar 

  23. B. P. Leonard, “A stable and accurate convective modeling procedure based on quadratic upstream interpolation,” Comp. Meth. Appl. Mech. Eng. 19, 59–98 (1979).

    Article  Google Scholar 

  24. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed. (Bell & Bain, Glasgow, 2007).

    Google Scholar 

  25. N. Berour, D. Lacroix, P. Boulet, and G. Jeandel, “Contribution to the improvement of the QUICK scheme for the resolution of the convection–diffusion problems,” Heat Mass Transfer 43, 1075–1085 (2007).

    Article  Google Scholar 

  26. O. A. Bessonov, “Analysis of mixed convection in the Czochralski model in a wide range of Prandtl numbers,” Fluid Dynam. 52, 375–387 (2017).

    Article  MathSciNet  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1987).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to O.A. Bessonov and G.G. Tsypkin for useful discussions.

Funding

This work was supported by the Russian Science Foundation, project no. 16-11-10195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Soboleva.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soboleva, E.B. A Method for Numerical Simulation of Haline Convective Flows in Porous Media as Applied to Geology. Comput. Math. and Math. Phys. 59, 1893–1903 (2019). https://doi.org/10.1134/S0965542519110101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519110101

Keywords:

Navigation