Skip to main content
Log in

Immobilized ionic liquids based on molybdenum- and tungsten-containing heteropoly acids: Structure and catalytic properties in thiophene oxidation

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Comparative analysis of heterogeneous catalysts for the peroxide oxidation of thiophene is conducted. The catalysts are imidazole ionic liquids (ILs) containing anions of phosphomolybdic and phosphotungstic acids immobilized on mineral supports. Immobilization is implemented by the covalent bonding of an IL fragment to a silica surface or by adsorption on alumina. The catalysts are active not only in the model oxidation of thiophene in isooctane, but also in the desulfurization of a straight-run diesel fraction and the “synthetic crude oil” derived from oil shale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Supported Ionic Liquids: Fundamentals and Applications, Ed. by R. Fehrmann, A. Riisager, and M. Haumann (Wiley–WCH, Weinheim}, 2014}

  2. M. Li, M. Zhang, A. Wei, et al., J. Mol. Catal. A: Chem. 406, 23 (2015).

    Article  CAS  Google Scholar 

  3. X. Y. Shi and J. F. Wei, J. Mol. Catal. A: Chem. 280, 142 (2008).

    Article  CAS  Google Scholar 

  4. E. Kowsari, Ionic Liquids: New Aspects for the Future, Ed. by J.-I. Kadokawa (InTech, Rijeka, 2013), ch. 11, p. 277.

    Google Scholar 

  5. A. V. Anisimov and A. V. Tarakanova, Ross. Khim. Zh. (Zh. Ross. Khim. Ob-va Im. D.I. Mendeleeva) 52 (4), 32 (2008).

    CAS  Google Scholar 

  6. X. Shi, X. Han, W. Ma, et al., J. Mol. Catal. A: Chem. 341, 57 (2011).

    Article  CAS  Google Scholar 

  7. J. Zhang, A. Wang, X. Li, and X. Ma, J. Catal. 279, 269 (2011).

    Article  CAS  Google Scholar 

  8. I. G. Tarkhanova, A. V. Anisimov, S. V. Verzhichinskaya, et al., Pet. Chem. 56, 158 (2016).

    Article  CAS  Google Scholar 

  9. S. Otsuki, T. Nonaka, N. Takashima, et al., Energy Fuels 14, 1232 (2000).

    Article  CAS  Google Scholar 

  10. I. G. Tarkhanova, M. G. Gantman, and V. M. Zelikman, Appl. Catal., A 470, 81 (2014).

    Article  CAS  Google Scholar 

  11. X. Y. Shi and J. F. Wei, J. Mol. Catal. A: Chem. 280, 142 (2008).

    Article  CAS  Google Scholar 

  12. Y. Sasaki, K. Ushimaru, K. Iteya, et al., Tetrahedron Lett. 45, 9513 (2004).

    Article  CAS  Google Scholar 

  13. A. I. Busev, Analytical Chemistry of Molybdenum (Izd. AN SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  14. A. I. Busev, Analytical Chemistry of Tungsten (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  15. A. K. Buryak and T. M. Serdyuk, Usp. Khim. 82, 369 (2013).

    Article  Google Scholar 

  16. S. V. Kardashev, S. V. Lysenko, S. V. Egazar’yants, et al., Khim. Tekhnol. Topl. Masel, No. 6, 3 (2015).

    Google Scholar 

  17. I. V. Kozhevnikov, Chem. Rev. 98, 171 (1998).

    Article  CAS  Google Scholar 

  18. J. L. Garsia-Gutierrez, G. A. Fuentes, M. E. Hernandez-Teran, et al., Appl. Catal., A 334, 366 (2008).

    Article  Google Scholar 

  19. J. Т. Sampanthar, H. Xiao, J. Dou, et al., Appl. Catal., B 63, 85 (2006).

    Article  CAS  Google Scholar 

  20. L. Chen, S. Guo, and D. Zhao, Chin. J. Chem. Eng. 15, 520 (2007).

    Article  CAS  Google Scholar 

  21. B. Zhang, Z. Jiang, J. Li, et al., J. Catal. 287, 5 (2012).

    Article  CAS  Google Scholar 

  22. L. Kong, G. Li, and X. Wang, Catal. Lett. 92, 163 (2004).

    Article  CAS  Google Scholar 

  23. L. Kong, G. Li, and X. Wang, Catal. Today 93, 341 (2004).

    Article  Google Scholar 

  24. S. Otsuki, T. Nonaka, N. Takashima, et al., Energy Fuels 14, 1232 (2000).

    Article  CAS  Google Scholar 

  25. F. Al-Shahrani, T. Xiao, S. A. Liewellyn, et al., Appl. Catal., B 73, 311 (2007).

    Article  CAS  Google Scholar 

  26. D. Wang, E. W. Qian, H. Amano, et al., Appl. Catal., A 253, 91 (2003).

    Article  CAS  Google Scholar 

  27. Y. Bi, M. Zhou, H. Hu, et al., React. Kinet. Catal. Lett. 72, 73 (2001).

    Article  CAS  Google Scholar 

  28. Z. P. Pai, D. I. Kochubey, P. V. Berdnikova, et al., J. Mol. Catal. A: Chem. 332, 122 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Tarkhanova.

Additional information

Original Russian Text © I.G. Tarkhanova, A.V. Anisimov, A.K. Buryak, A.A. Bryzhin, A.G. Ali-Zade, A.V. Akopyan, V.M. Zelikman, 2017, published in Neftekhimiya, 2017, Vol. 57, No. 5, pp. 536–544.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarkhanova, I.G., Anisimov, A.V., Buryak, A.K. et al. Immobilized ionic liquids based on molybdenum- and tungsten-containing heteropoly acids: Structure and catalytic properties in thiophene oxidation. Pet. Chem. 57, 859–867 (2017). https://doi.org/10.1134/S0965544117100164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117100164

Keywords

Navigation