Skip to main content
Log in

Effects of paraquat on lipid peroxidation and antioxidant enzymes in aquatic fern Azolla microphylla

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Paraquat is most extensively used methyl viologen herbicide to control weeds in the rice-Azolla ecosystem. The effects of different paraquat (PQ) dosages on growth, lipid peroxidation, and activity of antioxidant enzymes of Azolla microphylla Kaul. were investigated. The results indicated that Azolla fronds survived only at the concentrations of 2–6 μM PQ. Frond fragmentation and browning occurred after 24 h at 8 μM PQ. At 24 h, the amount of proteins decreased by 48.7 % in Azolla fronds exposed to 10 μM PQ than that in control fronds. The supplementation of 10 μM PQ increased the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) by 2,4-, 1,8-, 3,0-, and 2,2-fold, respectively, as compared with control. The content of PQ and activities of SOD, CAT, GPX, and APX were found to be positively correlated. Our study showed that PQ (2–6 μM) caused ROS overproduction in Azolla fronds, which were scavenged by induced activities of antioxidant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

ASA:

ascorbate

CAT:

catalase

GPX:

guaiacol peroxidase

PQ:

paraquat

SOD:

superoxide dismutase

References

  1. Wu, G.L., Cui, J., Tao, L., and Yang, H., Fluroxypyr Triggers Oxidative Damage by Producing Superoxide and Hydrogen Peroxide in Rice (Oryza sativa), Ecotoxicology, 2010, vol. 19, pp. 124–132.

    Article  PubMed  CAS  Google Scholar 

  2. Chagas, R.M., Silveira, J.A.G., Rafael, V., Riberio, R.V., Vitorello, V.A., and Carrer, H., Phytochemical Damage and Comparative Performance of Superoxide Dismutase and Ascorbate Peroxidase in Sugarcane Leaves Exposed to Paraquat-Induced Oxidative Stress, Pest. Biochem. Physiol., 2008, vol. 90, pp. 181–188.

    Article  CAS  Google Scholar 

  3. Qian, H., Chen, W., Sun, L., Jin, Y., Liu, W., and Fu, Z., Inhibitory Effects of Paraquat on Photosynthesis and the Response to Oxidative Stress in Chlorella vulgaris, Ecotoxicology, 2009, vol. 18, pp. 537–543.

    Article  PubMed  CAS  Google Scholar 

  4. Peixoto, F.P., Gomes-Laranjo, J., Vicente, J.A., and Madeira, V.M.C., Comparative Effects of Herbicides Dicamba, 2,4-D and Paraquat on Non-Green Tuber Calli, J. Plant Physiol., 2008, vol. 165, pp. 1125–1133.

    Article  PubMed  CAS  Google Scholar 

  5. Singh, A.L. and Singh, P.K., Effect of Herbicide Application on Azolla Cultivation with Rice, Biofertilizers, Potentialities and Problems, Philippines: International Rice Research Institute, 1988, pp. 131–137.

    Google Scholar 

  6. Kumar, S., Habib, K., and Fatma, T., Endosulfan Induced Biochemical Changes in Nitrogen-Fixing Cyanobacteria, Sci. Total Environ., 2008, vol. 403, pp. 130–138.

    Article  PubMed  CAS  Google Scholar 

  7. Sood, A. and Ahluwalia, A.S., Cyanobacterial-Plant Symbioses with Emphasis on Azolla-Anabaena Symbiotic System, Ind. Fern J., 2009, vol. 26, pp. 166–178.

    Google Scholar 

  8. Sood, A., Prasanna, R., Prasanna, B.M., and Singh, P.K., Genetic Diversity among and within Cultured Cyanobionts of Diverse Species of Azolla, Folia Microbiol., 2008, vol. 53, pp. 35–43.

    Article  CAS  Google Scholar 

  9. Pabby, A., Prasanna, R., and Singh, P.K., Biological Significance of Azolla and Its Utilization in Agriculture, Proc. Ind. Natl. Sci. Acad. (PINSA-B): Biol. Sci., 2004, vol. 70, pp. 301–335.

    Google Scholar 

  10. Watanabe, I. and Espinas, C.R., Potential of Nitrogen Fixing Azolla-Anabaena Complex as Biofertilizer in Paddy Soil, Philippines: International Rice Research Institute, 1976.

    Google Scholar 

  11. Calderbank, A. and Yuen, S., An Ion Exchange Method for Determining Paraquat Residues in Food Crops, Anal. Biochem., 1965, vol. 90, pp. 99–105.

    CAS  Google Scholar 

  12. Anderson, J.M. and Boardman, N.K., Studies on Greening of Dark Brown Bean Plants. VI. Developing of Photochemical Activity, Aust. J. Biol. Sci., 1964, vol. 17, pp. 93–101.

    Google Scholar 

  13. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    PubMed  CAS  Google Scholar 

  14. Harris, N. and Dodge, A.D., The Effect of Paraquat on Flax Cotyledon Leaves: Changes in Fine Structure, Planta, 1972, vol. 104, pp. 201–209.

    Article  CAS  Google Scholar 

  15. Velikova, V., Yordanov, I., and Edreva, A., Oxidative, Stress and Some, Antioxidant Systems in Acid Rain Treated Bean Plants, Plant Sci., 2000, vol. 151, pp. 59–66.

    Article  CAS  Google Scholar 

  16. Giannopolitis, C.N. and Ries, S.K., Superoxide Dismutase Occurrence in Higher Plants, Plant Physiol., 1977, vol. 59, pp. 309–314.

    Article  PubMed  CAS  Google Scholar 

  17. Cakmak, I. and Marschner, H., Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase in Bean Leaves, Plant Physiol., 1992, vol. 98, pp. 1222–1227.

    Article  PubMed  CAS  Google Scholar 

  18. Egley, G.H., Paul, R.N., Vaughn, K.C., and Duke, S.O., Role of Peroxidase in the Development of Water Impermeable Seed Coats in Sida spinosa, L., Planta, 1983, vol. 157, pp. 224–232.

    Article  CAS  Google Scholar 

  19. Zhou, B., Guo, Z., Xing, J., and Hung, B., Nitric Oxide Is Involved in Abscisic Acid Induced Antioxidant Activities in Stylisanthes guianesis, J. Exp. Bot., 2005, vol. 56, pp. 3223–3228.

    Article  PubMed  CAS  Google Scholar 

  20. Holst, R.W., Yopp, J.H., and Kapusta, G., Effect of Several Pesticides on Growth and Nitrogen Assimilation of Azolla-Anabaena Symbiosis, Weed Sci., 1982, vol. 30, pp. 54–58.

    CAS  Google Scholar 

  21. Hassan, N.M. and Alla, M.M.N., Oxidative Stress in Herbicide-Treated Broad Bean and Maize Plants, Acta Physiol. Plant., 2005, vol. 27, pp. 429–438.

    Article  CAS  Google Scholar 

  22. Kingston-Smith, A.F. and Foyer, C.H., Bundle Sheath Proteins Are More Sensitive to Oxidative Damage than Those of the Mesophyll in Maize Leaves Exposed to Paraquat or Low Temperatures, J. Exp. Bot., 2000, vol. 51, pp. 123–130.

    Article  PubMed  CAS  Google Scholar 

  23. Apel, K. and Hirt, H., Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 373–399.

    Article  PubMed  CAS  Google Scholar 

  24. Blokhina, O., Virolainen, E., and Fagerstedt, K.V., Antioxidants, Oxidative Damage, and Oxygen Deprivation Stress: A Review, Ann. Bot., 2003, vol. 91, pp. 179–194.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, Y.P., Kim, S.H., Bang, J.W., Lee, H.S., Kwak, S.S., and Kwon, S.Y., Enhanced Tolerance to Oxidative Stress in Transgenic Tobacco Plants Expressing Three Antioxidant Enzymes in Chloroplasts, Plant Cell Rep., 2007, vol. 26, pp. 591–598.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sood.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, A., Pabbi, S. & Uniyal, P.L. Effects of paraquat on lipid peroxidation and antioxidant enzymes in aquatic fern Azolla microphylla . Russ J Plant Physiol 58, 667–673 (2011). https://doi.org/10.1134/S1021443711040170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443711040170

Keywords

Navigation