Skip to main content
Log in

Application of fluctuating asymmetry indexes of silver birch leaves for diagnostics of plant communities under technogenic pollution

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The prospects for applying the fluctuating asymmetry (FA) of silver birch (Betula pendula Roth) leaves for diagnosis of plant community conditions in technogenically polluted environments are considered with an example of the effect of heavy metals and chronic ionizing radiation. An increase in the minimum sample size to 150–180 leaves and measurements of morphometric traits with an improved accuracy of 0.06–0.07 mm made it possible to overcome the influence of sample size on FA parameters. The excess content of nickel (18.5 times with respect to the background level), lead (16.0 times), manganese (5.8 times), and copper (3.0 times) in birch leaves was accompanied by the increase in multivariate FA index by 20.0%. The chronic exposure to ionizing radiation (at absorbed dose rate on the soil surface of 4.74 µGy/h) elevated the multi-variate FA index of leaves by 29.8% and the content of chlorophylls a and b in leaves by 50.3 and 82.9%, respectively. It was found that the most informative morphometric trait for analysis of birch leaf FA is the distance between the bases of the first and second lateral veins; its FA index rose to 40.4% under the influence of heavy metals and to 53.6% under exposure to chronic ionizing radiation. Thus, FA can be regarded as a sensitive biomarker for detecting early negative responses of forest ecosystems to technogenic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADR:

absorbed dose rate

FA:

fluctuating asymmetry

MAC:

maximum allowable concentration

References

  1. MacGleid, Zh., Europe’s environment: the fourth assessment, Evropeiskoe agentstvo po okruzhayushchei srede (EAOC) (European Environment Agency), Kopengagen, 2007.

    Google Scholar 

  2. Ivanov, V.P., Marchenko, S.I., Glazun, I.N., Panicheva, D.M., and Ivanov, Yu.V., The development of female cones and seeds in Pinus sylvestris (Pinaceae) in the emission zone of cement factory (Bryansk region), Rastit. Resur., 2013, vol. 49, pp. 547–557.

    CAS  Google Scholar 

  3. Palmer, A.R. and Strobeck, C., Fluctuating asymmetry analyses revisited, Developmental Instability: Causes and Consequences, Polak, M., Ed., Oxford: Oxford University Press, 2003, pp. 279–319.

    Google Scholar 

  4. Graham, J.H., Raz, S., Hel-Or, H., and Nevo, E., Fluctuating asymmetry: methods, theory, and applications, Symmetry, 2010, vol. 2, pp. 466–540.

    Article  Google Scholar 

  5. Shadrina, E.G. and Vol’pert, Ya.L., Developmental instability of the organism as a result of pessimization of environment under anthropogenic transformation of natural landscapes, Russ. J. Dev. Biol., 2014, vol. 45, pp. 117–126.

    Article  CAS  Google Scholar 

  6. Zakharov, V.M. and Trofimov, I.E., Homeostatic mechanisms of biological systems: development homeostasis, Russ. J. Dev. Biol., 2014, vol. 45, pp. 105–116.

    Article  CAS  Google Scholar 

  7. Lempa, K., Martel, J., Koricheva, J., Haukioja, E., Ossipov, V., Ossipova, S., and Pihlaja, K., Covariation of fluctuating asymmetry, herbivory and chemistry during birch leaf expansion, Oecologia, 2000, vol. 122, pp. 354–360.

    Article  Google Scholar 

  8. Hagen, S.B., Ims, R.A., Yoccoz, N.G., and Sorlibraten, O., Fluctuating asymmetry as an indicator of elevation stress and distribution limits in mountain birch (Betula pubescens), Plant Ecol., 2008, vol. 195, pp. 157–163.

    Article  Google Scholar 

  9. Kozlov, M.V., Zvereva, E.L., and Zverev, V.E., Fluctuating asymmetry of woody plants, Impacts of Point Polluters on Terrestrial Biota: Comparative Analysis of 18 Contaminated Areas, Dordrecht: Springer, 2009, pp. 197–224.

    Chapter  Google Scholar 

  10. Pulford, I.D. and Watson, C., Phytoremediation of heavy metal-contaminated land by trees — a review, Environ. Int., 2003, vol. 29, pp. 529–540.

    Article  CAS  PubMed  Google Scholar 

  11. Klisaric, N.B., Miljkovic, D., Avramov, S., Zivkovic, U., and Tarasjev, A., Fluctuating asymmetry in Robinia pseudoacacia leaves — possible in situ biomarker? Environ. Sci. Pollut. Res., 2014, vol. 21, pp. 12928–12940.

    Article  Google Scholar 

  12. Nagamitsu, T., Kawahara, T., and Hotta, M., Phenotypic variation and leaf fluctuating asymmetry in isolated populations of an endangered dwarf birch Betula ovalifolia in Hokkaido, Japan, Plant Species Biology, 2004, vol. 19, pp. 13–21.

    Article  Google Scholar 

  13. Beasley, D.A.E., Bonisoli-Alquati, A., and Mousseau, T.A., The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: a meta-analysis, Ecological Indicators, 2013, vol. 30, pp. 218–226.

    Article  Google Scholar 

  14. Wuytack, T., Wuyts, K., Dongen, S.V., Baeten, L., Kardel, F., Verheyen, K., and Samson, R., The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L., Environ. Pollut., 2011, vol. 159, pp. 2405–2411.

    Article  CAS  PubMed  Google Scholar 

  15. Betula: Proceedings of the IDS Betula Symposium (Sussex, 2–4 October, 1992), Hunt, D.R., Ed., London: International Dendrology Society, 1993.

  16. Franiel, I. and Wieski, K., Leaf features of silver birch (Betula pendula Roth.). Variability within and between two populations (uncontaminated vs. Pb-contaminated and Zn-contaminated site), Trees, 2005, vol. 19, pp. 81–88.

    Article  Google Scholar 

  17. Ivanov, V.P., Marchenko, S.I., and Ivanov, Yu.V., Features of the organization of biological monitoring in woodlands near-hand plant facilities, Ekologiya i Promyshlennost’ Rossii, 2014, no. 8, pp. 35–39.

    Google Scholar 

  18. Ivanov, V.P., Marchenko, S.I., and Akimenkov, N.V., Ecological state of the natural environment according to the indices of Betula pendula growth stability, Teor. i Prikl. Ekologiya, 2009, no. 1, pp. 28–32.

    Google Scholar 

  19. Geras’kin, S.A. and Volkova, P.Yu., Genetic diversity in Scots pine populations along a radiation exposure gradient, Sci. Total Environ., 2014, vol. 496, pp. 317–327.

    Article  PubMed  Google Scholar 

  20. Marchenko, S.I., Tekhnika vypolneniya izmeritel’nykh rabot s ispol’zovaniem komp’yutera (Technique of Measuring Works Using a Computer), Bryansk: Bryansk. Gos. Inzhenerno-Tekhnologicheskaya Akademiya, 2008.

    Google Scholar 

  21. Zakharov, V.M., Baranov, A.S., Borisov, V.I., Valetskii, A.V., Kryazheva, N.G., Chistyakova, E.K., and Chubinishvili, A.T., Zdorov’e sredy: metodika otsenki (Environmental Health: Assessment Methodology), Moscow: Tsentr Ekologicheskoi Politiki Rossii, 2000.

    Google Scholar 

  22. Kozlov, M.V., Haukioja, E., Bakhtiarov, A.V., Stroganov, D.N., and Zimina, S.N., Root versus canopy uptake of heavy metals by birch in an industrially polluted area: contrasting behavior of nickel and copper, Environ. Pollut., 2000, vol. 107, pp. 413–420.

    Article  CAS  PubMed  Google Scholar 

  23. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  24. Otchet o vypolnenii kompleksa nauchno-issledovatel’skikh rabot “Otsenka vliyaniya shlakootvala na lesnye ekosistemy Dumchinskogo lesnichestva v 4–7 kv. Mtsenskogo leskhoza Orlovskoi oblasti” (Report on the Implementation of Complex Scientific Research “Assessing the Impact of Ash Disposal Area on Forest Ecosystems in 4–7 Forest Compartments of Mtsensk. Forestry, Dumchinsk. Forest District, Oryol. oblast”), Orel, Bryansk: Gos. komitet okhrany okruzhayushchei prirodnoi sredy i prirodnykh resursov Orlovskoi obl., Upravlenie lesami Orlovskoi obl., Problemnaya laboratoriya “Bioraznoobrazie i ekologich. monitoring prirodnykh ekosistem” Bryanskoi Gos. Inzhenerno-Tekhnologicheskoi Akademii, 2000.

    Google Scholar 

  25. Valkama, J. and Kozlov, M.V., Impact of climatic factors on the developmental stability of mountain birch growing in a contaminated area, J. Appl. Ecol., 2001, vol. 38, pp. 665–673.

    Article  Google Scholar 

  26. Gorshkova, T.A., Churyukin, R.S., Karaguzova, O.A., Amosova, N.V., Pavlova, N.N., Martirosyan, Yu.M., Vlasova, O.P., and Simakova, I.M., Study of the dependence of fluctuating asymmetry in plants of the size of radioactive contamination, Izv. Vyssh. Uchebn. Zavedenii, Yadernaya Energetika, 2013, no. 1, pp. 116–124.

    Google Scholar 

  27. De Micco, V., Arena, C., Pignalosa, D., and Durante, M., Effects of sparsely and densely ionizing radiation on plants, Radiat. Environ. Biophys., 2011, vol. 50, pp. 1–19.

    Article  PubMed  Google Scholar 

  28. Pozolotina, V.N., Otdalennye posledstviya deistviya radiatsii na rasteniya (Long-Term Effects of Radiation Action on Plants), Yekaterinburg: Akademkniga, 2003.

    Google Scholar 

  29. Rothwell, G.W., Wyatt, S.E., and Tomescu, A.M.F., Plant evolution at the interface of paleontology and developmental biology: an organism-centered paradigm, Am. J. Bot., 2014, vol. 101, pp. 1–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.P., Ivanov, Y.V., Marchenko, S.I. et al. Application of fluctuating asymmetry indexes of silver birch leaves for diagnostics of plant communities under technogenic pollution. Russ J Plant Physiol 62, 340–348 (2015). https://doi.org/10.1134/S1021443715030085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715030085

Keywords

Navigation