Skip to main content
Log in

Mutation in the cspH-cspG gene cluster enhances expression of heat-shock proteins and SOS repair system of Escherichia coli

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The recessive radioresistance allele gam12 cloned in plasmid pBC4042-gam12 slightly increases the radiation resistance of Escherichia coli wild-type cells. Meanwhile, irradiation by γ-rays induces transition of gam r 12 mutation to the homozygous state and causes a 3.37-fold increase in radiation resistance of these cells. The mutation gam r 12 was located at 22.68 min of the chromosomal map in the region of cspH-cspG gene cluster of cold-shock proteins. Sequence analysis of gam12 allele revealed the nucleotide sequence of cold-shock gene cspG and insertions in the C-terminal part of the gene. Translation of mutant cspG gene can lead to synthesis of a truncated product that represents the N-terminal protein fragment with motifs governing binding with DNA and RNA. Analysis of the Escherichia coli genome revealed motifs recognized by proteins of the cspA family in genes of cold shock, heat shock, SOS regulon, and other systems. These data suggest the possibility of involvement of mutant RNA-chaperones of type CspA′ and CspG′ in the expression of key genes in systems of SOS repair and recombination or auxiliary stress systems, including heat-shock proteins, in radiation resistant mutants of E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae, W., Jones, P.G., and Inouye, M., CspA, the Major Cold Shock Protein of Escherichia coli, Negatively Regulates Its Own Gene Expression, J. Bacteriol., 1997, vol. 179, no. 22, pp. 7081–7088.

    PubMed  CAS  Google Scholar 

  2. Phadtare, S. and Inouye, M., Genome-Wide Transcriptional Analysis of the Cold Shock Response in Wild-Type and Cold-Sensitive, Quadruple-csp-Deletion Strains of Escherichia coli, J. Bacteriol., 2004, vol. 186, no. 20, pp. 7007–7014.

    Article  PubMed  CAS  Google Scholar 

  3. Lelivelt, M.J. and Kawula, T.H., Hsc66, an hsp70 Homolog in Escherichia coli, Is Induced by Cold Shock but not by Heat Shock, J. Bacteriol., 1995, vol. 177, no. 17, pp. 4900–4907.

    PubMed  CAS  Google Scholar 

  4. Verbenko, V.N., Akhmedov, A.T., and Kalinin, V.A., Temperature-Induced Radioresistance of Escherichia coli Cells and the Cold Shock Proteins, Radiobiologiya, 1986, vol. 26, no. 4, pp. 453–459.

    CAS  Google Scholar 

  5. Verbenko, V.N., Kuznetsova, L.V., Smolnikova, A.V., and Kalinin, V.L., Effect of an Insertional Mutation in the cspA Gene Encoding the Major Cold-Shock Protein on Radiation Resistance of Escherichia coli, Russ. J. Genet., 2003, vol. 39, no. 6, pp. 618–626.

    Article  CAS  Google Scholar 

  6. Schindelin, H., Jiang, W., Inouye, M., and Heinemann, U., Crystal Structure of CspA, the Major Cold Shock Protein of Escherichia coli, Proc. Nat. Acad. Sci. USA, 1994, vol. 91, no. 11, pp. 5119–5123.

    Article  PubMed  CAS  Google Scholar 

  7. Yamanaka, K., Fang, L., and Inouye, M., The CspA Family in Escherichia coli: Multiple Gene Duplication for Stress Adaptation, Mol. Microbiol., 1998, vol. 27, no. 2, pp. 247–255.

    Article  PubMed  CAS  Google Scholar 

  8. Bae, W., Xia, B., Inouye, M., and Severinov, K., Escherichia coli CspA-Family RNA Chaperones Are Transcription Antiterminators, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 14, pp. 7784–7789.

    Article  PubMed  CAS  Google Scholar 

  9. Jiang, W., Hou, Y., and Inouye, M., CspA, the Major Cold-Shock Protein of Escherichia coli, Is an RNA Chaperone, J. Biol. Chem., 1997, vol. 272, no. 1, pp. 196–202.

    Article  PubMed  CAS  Google Scholar 

  10. Verbenko, V.N., Akhmedov, A.T., and Kalinin, V.L., Escherichia coli K-12 Mutants with Increased Resistance to Ionizing Radiation: VI. Increased Radioresistance and the Heat Shock Proteins, Genetika (Moscow), 1986, vol. 22, no. 11, pp. 2658–2663.

    CAS  Google Scholar 

  11. Verbenko, V.N., Kuznetsova, L.V., and Kalinin, V.L., Mutant Alleles for Radioresistance form the Escherichia coli Strain Gamr444: Cloning and Preliminary Characteristics, Russ. J. Genet., 1994, vol. 30, no. 6, pp. 756–762.

    CAS  Google Scholar 

  12. Groisman, E.A., Castilho, B.A., and Casadaban, M.J., In vivo Cloning and Adjacent Gene Fusing with a mini-Mulac Bacteriophage Containing a Plasmid Replicon, Proc. Nat. Acad. Sci. USA, 1984, vol. 81, no. 5, pp. 1480–1483.

    Article  PubMed  CAS  Google Scholar 

  13. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  14. McPherson, M.J. and Müller, S.G., PCR, Oxford: Bios Sci. Publ., 2000.

    Google Scholar 

  15. Mudgett, J.S. and Taylor, W.D., Reciprocal and Non-Reciprocal Homologous Recombination between Escherichia coli Chromosomal DNA and Ultraviolet Light-Irradiated Plasmid DNA, Gene, 1986, vol. 19, no. 2, pp. 235–244.

    Article  Google Scholar 

  16. Kohara, Y., Akiyama, K., and Isono, K., The Physical Map of the Whole Escherichia coli Chromosome: Application of a New Strategy for Rapid Analysis and Sorting of a Large Genomic Library, Cell, 1987, vol. 50, no. 3, pp. 495–508.

    Article  PubMed  CAS  Google Scholar 

  17. Jones, P.G. and Inouye, M., The Cold-Shock Response: A Hot Topic, Mol. Microbiol., 1994, vol. 11, no. 5, pp. 811–818.

    Article  PubMed  CAS  Google Scholar 

  18. Friedberg, E.C., Walker, G.C., and Siede, W., DNA Repair and Mutagenesis, Washington, DC: ASM Press, 1995.

    Google Scholar 

  19. Verbenko, V.N., Kuznetsova, L.V., Bikineeva, E.G., and Kalinin, V.L., The Effect of Mutations in Structural Genes for Heat Shock Proteins on Radioresistance in Escherichia coli, Russ. J. Genet., 1992, vol. 28, no. 2, pp. 99–110.

    CAS  Google Scholar 

  20. Verbenko, V.N. and Kalinin, V.L., Growth of Radiation Resistance in Bacteriophages as a Result of Intensifying Expression of the Stress System in Host Cells, Russ. J. Genet., 1995, vol. 31, no. 12, pp. 1386–1392.

    CAS  Google Scholar 

  21. Nagai, H., Yusawa, H., and Yura, T., Regulation of the Heat Shock Response in E. coli: Involvement of Positive and Negative Cis-Acting Elements in Translational Control of 32 Synthesis, Biochimie, 1991, vol. 73, no. 12, pp. 1473–1479.

    Article  PubMed  CAS  Google Scholar 

  22. Suslov, A.V. and Suslova, I.N., Quantitative Analysis of Inducible Systems of Escherichia coli and Bacillus subtilis Using Radioimmunological Methods, Radiatsionnaya Biol. Radioekol., 1998, vol. 38, no. 4, pp. 495–501.

    CAS  Google Scholar 

  23. Bresler, S.E., Verbenko, V.H., and Kalinin, V.L., Escherichia coli K-12 Mutants with Enhanced Resistance to Ionizing Radiation: I. Isolation and Study of Cross Resistance to Different Agents, Genetika (Moscow), 1980, vol. 16, no. 11, pp. 1753–1763.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Verbenko.

Additional information

Original Russian Text © V.N. Verbenko, L.V. Kuznetsova, L.A. Luchkina, N.V. Klopov, 2009, published in Genetika, 2009, Vol. 45, No. 9, pp. 1194–1202.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbenko, V.N., Kuznetsova, L.V., Luchkina, L.A. et al. Mutation in the cspH-cspG gene cluster enhances expression of heat-shock proteins and SOS repair system of Escherichia coli . Russ J Genet 45, 1047–1054 (2009). https://doi.org/10.1134/S102279540909004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279540909004X

Keywords

Navigation