Skip to main content
Log in

Electrochemical behavior of electrodes containing nanostructured carbon of various morphology in the cathodic region of potentials

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Voltammograms for electrodes containing nanostructured carbon of various morphology (single-walled carbon nanotubes, filament, columnar structures) are obtained in neutral aqueous electrolytic solutions. Experimental proofs for the existence of injection of solvated electrons into electrolytic solutions at moderate cathodic potentials are presented for all the electrodes. It is established that this effect is connected with the presence of atomically sharp areas on the electrode surfaces. It is assumed that the reason for the appearance of solvated electrons is the autoelectron emission at the interface between the conducting surface of the carbon material and the electrolytic solution. By studying the nitrate anion reduction it is shown that the reduction over-voltage of stable compounds may be lowered by substituting a fast homogeneous reaction of solvated electrons with the initial substance for the hindered heterogeneous stage of the first electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, Y.P., Rahm, E., and Holze, R., J. Power Sources, 2003, vol. 114, p. 228.

    Article  CAS  Google Scholar 

  2. Cheng, H.-M., Yang, Q.-H., and Liu, C., Carbon, 2003, vol. 39, p. 1447.

    Article  Google Scholar 

  3. Xiao, Q. and Zhou, X., Electrochim. Acta, 2003, vol. 48, p. 575.

    Article  CAS  Google Scholar 

  4. Liu, C.Y., Bard, A.J., and Wuld, F., Electrochem. Solid State Lett., 1999, vol. 2, p. 577.

    Article  CAS  Google Scholar 

  5. Li, N.Q., Wang, J.X., and Li, M.X., Rev. Anal. Chem., 2003, vol. 22, p. 19.

    Google Scholar 

  6. Joshi, K.A., Prouza, M., Kum, M., Wang, J., Tang, J., Haddon, R., Chen, W., and Mulchandani, A., Anal. Chem., 2006, vol. 78, p. 331.

    Article  CAS  Google Scholar 

  7. Wang, J., Hocevar, S.B., and Ogorevc, B., Electrochem. Commun., 2004, vol. 6, p. 176.

    Article  CAS  Google Scholar 

  8. Lu, S.F., Dang, X.P., Wu, K.B., and Hu, S.S., J. Nanosci. Nanotechnol., 2003, vol. 3, p. 401.

    Article  Google Scholar 

  9. Barisci, J.N., Wallace, G.G., Chattopadhyay, D., Papadimitrakopoulos, F., and Baughman, R.H., J. Electrochem. Soc., 2003, vol. 150, p. E409.

    Article  CAS  Google Scholar 

  10. Barisci, J.N., Wallace, G.G., MacFarlane D.R., and Baughman R.H., Electrochem. Commun., 2004, vol. 6, p. 22.

    Article  CAS  Google Scholar 

  11. Kavan, L., Rapta, P., Dunsch, L., Bronikowski, M.J., Willis, P., and Smalley, R.E., J. Phys. Chem. B, 2001, vol. 105, p. 10764.

    Article  CAS  Google Scholar 

  12. Kazaoui, S., Minami, N., Matsuda, N., Kataura, H., and Achiba, Y., Appl. Phys. Lett., 2001, vol. 78, p. 3433.

    Article  CAS  Google Scholar 

  13. Kavan, L., Rapta, P., and Dunsch, L., Chem. Phys. Lett., 2000, vol. 328, p. 363.

    Article  CAS  Google Scholar 

  14. Chen, J., Bao, J.-C., and Cai, C.-X., Chin. J. Chem., 2003, vol. 21, p. 665.

    CAS  Google Scholar 

  15. Ye, J.-S., Wen, Y., Zhang, W.D., Gan, L.M., Xu, G.Q., and Sheu, F.-S., Electrochem. Commun., 2004, vol. 6, p. 66.

    Article  CAS  Google Scholar 

  16. Britto, P.J., Santhanam, K.S.V., and Ajayan, P.M., Bioelectrochem. Bioenerg., 1996, vol. 41, p. 121.

    Article  CAS  Google Scholar 

  17. Matyushenko, V.I., Krivenko, A.G., Stenina, E.V., Sviridova, L.N., Kurmaz, V.A., Kotkin, A.S., Krestinin, A.V., Zvereva, G.I., Badamshina, E.R., and Simbirtseva, G.V., Elektrokhimiya, 2003, vol. 39, p. 1251.

    Google Scholar 

  18. Krivenko, A.G., Matyushenko, V.I., Stenina, E.V., Sviridova, L.N., Krestinin, A.V., Zvereva, G.I., Kurmaz, V.A., Ryabenko, A.G., Dmitriev, S.N., and Skuratov, V.A., Electrochem. Commun., 2005, vol. 7, p. 199.

    Article  CAS  Google Scholar 

  19. Krestinin, A.V., Raevskii, A.V., Zhigalina, O.M., Zvereva, G.I., Kislov, M.B., Kolesova, O.I., Artemov, V.V., and Kiselev, N.A., Kinet. Katal., 2006, vol. 47, p. 201.

    Google Scholar 

  20. Kiselev, N.A., Moravsky, A.P., Ormont, A.B., and Zakharov, D.N., Carbon, 1999, vol. 37, p. 1093.

    Article  CAS  Google Scholar 

  21. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Elektrokhimiya, 2005, vol. 41, p. 157.

    Google Scholar 

  22. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Electrochim. Acta, 2002, vol. 47, p. 3891.

    Article  CAS  Google Scholar 

  23. Barisci, J.N., Wallace, G.G., and Baughman, R.H., J. Electroanal. Chem., 2000, vol. 488, p. 92.

    Article  CAS  Google Scholar 

  24. Stoll, M., Rafailov, P.M., Frenzel, W., and Thomsen, C., Chem. Phys. Lett., 2003, vol. 375, p. 625.

    Article  CAS  Google Scholar 

  25. Vol’fkovich, Yu.M. and Serdyuk, T.M., Elektrokhimiya, 2002, vol. 38, p. 935.

    CAS  Google Scholar 

  26. Kotz, R. and Carlen, M., Electrohim. Acta, 2000, vol. 45, p. 2483.

    Article  CAS  Google Scholar 

  27. Kierzek, K., Frackowiak, E., Lota, G., Gryglewicz, G., and Machnikowski, J., Electrochim. Acta, 2004, vol. 49, p. 515.

    Article  CAS  Google Scholar 

  28. Campbell, J.K., Sun, Li., and Crooks, R.M., J. Am. Chem. Soc., 1999, vol. 121, p. 3779.

    Article  CAS  Google Scholar 

  29. Nizhnikovskii, E.A., Khimicheskie istochniki avtonomnogo elektropitaniya radioelektronnoi apparatury (Autonomous Chemical Power Sources for Electronics), Moscow: Mosk. Energ. Inst., 2004.

    Google Scholar 

  30. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya: Radioliz gazov i zhidkostei (Modern Radiation Chemistry: The Radiolysis of Gases and Liquids), Moscow: Nauka, 1986.

    Google Scholar 

  31. Benderskii, V.A. and Benderskii, A.V., Laser Electrochemistry of Intermediates, New York: CRC, 1995, p. 313.

    Google Scholar 

  32. Colliazo, R., Schlesser, R., and Sitar, Z., Appl. Phys. Lett., 2001, vol. 78, p. 2058.

    Article  Google Scholar 

  33. Wang, M.S., Peng, L.-M., Wang, J.Y., and Chen, O., J. Phys. Chem. B, 2005, vol. 109, p. 110.

    Article  CAS  Google Scholar 

  34. Brodskii, A.M., Gurevich, Yu.Ya., Pleskov, Yu.V., and Rotenberg, Z.A., Sovremennaya photoelektrokhimiya: Fotoemissionnye yavleniya, (Modern Photoelectrochemistry: The Photoemission Phenomena), Moscow: Nauka, 1974.

    Google Scholar 

  35. Benderskii, V.A. and Krivenko, A.G., Usp. Khim., 1990, vol. 59, p. 3.

    CAS  Google Scholar 

  36. Lovall, D., Buss, M., Graugnard, E., Andres, R.P., and Reifenberger, R., Phys. Rev. B: Condens. Matter, 2000, vol. 61, p. 5683.

    CAS  Google Scholar 

  37. Sun, J.P., Zhang, Z.H., Hou, S.M., Zhang, G.M., Gu, Z.N., Zhao, X.Y., Liu, W.M., and Xue, Z.Q., Appl. Phys. A, 2002, vol. 75, p. 479.

    Article  CAS  Google Scholar 

  38. Alpatova, N.M., Krishtalik, L.I., and Pleskov, Yu.V., Topics Current. Chem., 1987, vol. 138, p. 151.

    Google Scholar 

  39. Okazaki, K., Nakato, Y., and Murakoshi, K., Phys. Rev. B: Condens. Matter, 2003, vol. 68, p. 35 434.

    Google Scholar 

  40. Buxton, G.V., Greenstock, C.L., Helman, W.Ph., and Ross, A.R., J. Phys. Chem. Ref. Data, 1988, vol. 17, p. 513.

    CAS  Google Scholar 

  41. Babenko, S.D., Benderskii, V.A., Zolotovitskii, Ya.M., and Krivenko, A.G., Elektrokhimiya, 1976, vol. 12, p. 1259.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Krivenko.

Additional information

Original Russian Text © A.G. Krivenko, N.S. Komarova, E.V. Stemina, L.N. Sviridova, V.A. Kurmaz, A.S. Kotkin, V.E. Muradyan, 2006, published in Elektrokhimiya, 2006, Vol. 42, No. 10, pp. 1164–1172.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivenko, A.G., Komarova, N.S., Stenina, E.V. et al. Electrochemical behavior of electrodes containing nanostructured carbon of various morphology in the cathodic region of potentials. Russ J Electrochem 42, 1047–1054 (2006). https://doi.org/10.1134/S1023193506100090

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193506100090

Key words

Navigation