Skip to main content
Log in

Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Iridium-based oxides are highly active as oxygen evolving electrocatalysts in PEM water electrolyzers. In this work XRD reveals that Ir-Sn oxides contain a single rutile phase with lattice parameters between those of pure IrO2 and SnO2. Addition of Ru leads to the synthesis of a core-shell type material due to the strong agglomeration of Ru colloids during the preparation procedure. The shell of this material consists of an Ir-Sn-Ru oxide deficient in Ru relative to the bulk. This leads to a decrease in the surface noble metal concentration (as found by XPS), which in turn results in a significant reduction in electrochemically active surface area. Polarization analysis indicates that the addition of Ru can influence the rate-determining step or mechanism by which oxygen is evolved. In a PEM water electrolysis cell, small additions of Sn do not significantly reduce the operating performance, however larger additions cause a performance loss due to a reduction in active surface area and increased ohmic resistance. When a pure IrO2 anode is used, a cell voltage is 1.61 V at 1 A cm−2 and 90°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oberlin, R. and Fischer, M., Proc. 6th World Hydrogen Energy Conf., 1986, p. 333.

  2. Marshall, A., Börresen, B., Hagen, G., Tsypkin, M., and Tunold, R., J. New. Mater. Electrochem. Syst., 2004, p. 197.

  3. Marshall, A., Börresen, B., Hagen, G., Tsypkin, M., and Tunold, R., Mater. Chem., 2005, vol. 94, p. 226.

    Article  CAS  Google Scholar 

  4. Marshall, A., Börresen, B., Hagen, G., Tsypkin, M., and Tunold, R., Electrochim. Acta (in press).

  5. Beer, H., UK Patent, no. 1 147 442.

  6. Trasatti, S., Electrochim. Acta, 1984, vol. 29, p. 1503.

    Article  CAS  Google Scholar 

  7. Kotz, R. and Stucki, S., Electrochim. Acta, 1986, vol. 31, p. 1311.

    Article  Google Scholar 

  8. Hutchings, R., Muller, K., and Stucki, S., J. Mater. Sci., 1984, vol. 19, p. 3987.

    Article  CAS  Google Scholar 

  9. Trasatti, S., Electrochim. Acta, 1991, vol. 36, p. 225.

    Article  CAS  Google Scholar 

  10. Boodts, J. and Trasatti, S., Electrochim. Acta, 1990, vol. 137, p. 3784.

    CAS  Google Scholar 

  11. Gottesfeld, S. and Zawodzinski, T.A., in Advances in Electrochemical Science and Engineering, Alkire, R.C., Gerischer, H., Kolb, D.M., and Tobias, C.N.V., Eds., Weinheim: Wiley, 1997, vol. 5, p. 235.

    Google Scholar 

  12. Wilson, M. and Gottesfeld, S., J. Appl. Electrochem., 1992, vol. 22, p. 1.

    Article  CAS  Google Scholar 

  13. Moulder, J., Stickle, W., Sobol, P., and Bomben, K., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, 1992.

  14. Rasten, E., Hagen, G., and Tunold, R., Electrochim. Acta, 2003, vol. 48, p. 3945.

    Article  CAS  Google Scholar 

  15. Bonet, F., Delmas, V., Grugeon, S., Herrera-Urbina, R., Silvert, P., and Tekaia-Elhsissen, K., Nanostruct. Mater., 1999, vol. 11, p. 1277.

    Article  CAS  Google Scholar 

  16. Rasten, E., Electrocatalysis in Water Electrolysis with Solid polymer Electrolyte, Ph.D. Thesis, Trondheim (Norway): NTNU, 2001.

    Google Scholar 

  17. Angelinetta, C., Atanasoska, L., Atanasoski, R., and Trasatti, S., J. Electroanal. Chem., 1986, vol. 214, p. 535.

    Article  CAS  Google Scholar 

  18. Walker, R., Bailes, M., and Peter, L., Electrochim. Acta, 1998, vol. 44, p. 1289.

    Article  CAS  Google Scholar 

  19. Tsirlina, G., Roginskaya, Y., and Postovalova, G., Russ. J. Electrochem, 1998, vol. 34, p. 504.

    CAS  Google Scholar 

  20. Tsirlina, G., Roginskaya, Y., Postovalova, G., and Vasil’ev, S., Russ. J. Electrochem., 1999, vol. 35, p. 1218.

    CAS  Google Scholar 

  21. Lodi, G., Zucchini, G., Battisti, A.D., Giatti, A., Battaglin, G., and Mea, G.D., Surf. Sci., 1991, vol. 252, p. 836.

    Article  Google Scholar 

  22. Ardizzone, S., Fregonara, G., and Trasatti, S., Electrochim. Acta, 1990, vol. 35, p. 263.

    Article  CAS  Google Scholar 

  23. Mattos-Costa, F., de Lima-Neto, P., Machado, S., and Avaca, L., Electrochim. Acta, 1998, vol. 44, p. 1515.

    Article  CAS  Google Scholar 

  24. De Pauli, C. and Trasatti, S., J. Electroanal. Chem., 2002, vol. 145, p. 538.

    Google Scholar 

  25. Balko, E. and Nguyen, P., J. Appl. Electrochem., 1991, vol. 21, p. 678.

    Article  CAS  Google Scholar 

  26. Matsumoto, Y. and Sato, E., Mater. Chem. Phys., 1986, vol. 14, p. 397.

    Article  CAS  Google Scholar 

  27. De Oliveira-Sousa, A., de Siliva, M., Machado, S., Avaca, L., and de Lima-Neto, P., Electrochim. Acta, 2000, vol. 45, p. 4467.

    Article  Google Scholar 

  28. Endo, K., Katayama, Y., Miura, T., and Kishi, T., J. Appl. Electrochem., 2002, vol. 32, p. 173.

    Article  CAS  Google Scholar 

  29. Bockris, J., J. Chem. Phys., 1956, vol. 24, p. 817.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tunold.

Additional information

Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 10, pp. 1260–1267.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, A., Børresen, B., Hagen, G. et al. Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts. Russ J Electrochem 42, 1134–1140 (2006). https://doi.org/10.1134/S1023193506100223

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193506100223

Key words

Navigation