Skip to main content
Log in

High-temperature proton conductors with structure-disordered oxygen sublattice

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Data on the thermogravimetry, spectroscopy, and electrical charge transfer as functions of T, aH2O, and aO2 for niobates and tantalates of alkali-earth metals with structure disordering of the oxygen sublattice, which can show high-temperature proton conduction, are summarized. It is shown that in the solid solution series with decreasing x (that is, with the increasing of the oxygen vacancies concentration) the proton conductivity increase, which is caused by the increasing of both the concentration of proton defects formed in the structure (in compliance with the formula Sr6 − 2x M +52 + 2x O10(OH)2−6x and their mobility. The proton transfer dominates for the compositions with x < 0.15 at temperatures below 550°C. In the solid solutions (Ba1−y Ca y )6Nb2O11 (0.23 ≤ y ≤ 0.47) characterized by equal concentration of oxygen vacancies, with the increasing of barium content (correspondingly, with the increasing of the lattice parameter) the oxygen-ion conductivity (at aH2O = 3 × 10−5) grows monotonically, which is caused by the decreasing of the oxygen atom migration energy and increasing of their mobility. In this series, the proton conductivity (at aH2O = 2 × 10−2) increased. It was shown, by using IR-spectroscopy and the 1H NMR method, that the protons exist in the complex oxide structure mainly as energy-wise nonequivalent OH groups: isolated, closely set, and paired, whose quantitative ratios are determined by the coordination preference of the B-sublattice elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pal’guev, S.F., Vysokotemperaturnye protonnye tverdye elektrolity (TRANSLATION), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1998.

    Google Scholar 

  2. Glockner, R., Neiman, A., Larring, Y., and Norby, T., Solid State Ionics, 1999, vol. 125, p. 369.

    Article  CAS  Google Scholar 

  3. Animitsa, I., Neiman, A., Sharafutdinov, A., and Nochrin, S., Solid State Ionics, 2000, vol. 136–137, p. 265.

    Article  Google Scholar 

  4. Animitsa, I.E., Neiman, A.Ya., Sharafutdinov, A.R, and Kazakova, M.G., Elektrokhimiya, 2001, vol. 37, p. 305 [Russ. J. Elektrochem. (Engl. Transl.), vol. 37, p.].

    Google Scholar 

  5. Animitsa, I., Norby, T., Marion, S., Glockner, R., and Neiman, A., Solid State Ionics, 2001, vol. 145, no. 1–4, p. 357.

    Article  CAS  Google Scholar 

  6. Colomban, Ph., Romain, F., Neiman, A., and Animitsa, I., Solid State Ionics, 2001, vol. 145, no. 1–4, p. 339.

    Article  CAS  Google Scholar 

  7. Animitsa, I.E., Titova, S.G., Neiman, A.Ya., Kochetova, N.A., Bronin, D.I., and Isaeva, E.V., Kristallografiya, 2002, vol. 47, p. 1077 [Crystallogr. Rep. (Engl. Transl.), vol. 47, p.].

    Google Scholar 

  8. Animitsa, I., Neiman, A., Kochetova, N., Melekh, B., and Sharafutdinov, A., Solid State Ionic, p. 2003.

  9. Animitsa, I., Denisova, T., Neiman, A., Nepryahin, A., Kochetova, N., Zhuravlev, N., and Colomban, Ph., Solid State Ionics, 2003, vol. 162–163, p. 73.

    Article  Google Scholar 

  10. Animitsa, I., Neiman, A., Titova, S., Kochetova, N., Isaeva, E., Sharafutdinov, A., Timofeeva, N., and Colomban, Ph., Solid State Ionics, 2003, vol. 156, p. 95.

    Article  CAS  Google Scholar 

  11. Animitsa, I., Neiman, A., Kochetova, N., Korona, D., and Sharafutdinov, A., Solid State Ionics, 2006, vol. 177, p. 2363.

    Article  CAS  Google Scholar 

  12. Animitsa, I.E., Neiman, A.Ya., Kochetova, N.A., and Korona, D.V., Elektrokhimiya, 2006, vol. 42, p. 361 [Rus. J. Electrochem. (Engl. Transl.), vol. 42, p.].

    Google Scholar 

  13. Kochetova, N.A., Cand. Sci. (Chem.) Dissertation, Yekaterinburg: UrGU, 2006.

    Google Scholar 

  14. Kochetova, N.A., Animitsa, I.E., and Neiman, A.Ya., Fizicheskaya khimiya, 2009, no. 2, vol. 83, p. 269.

    Google Scholar 

  15. Korona, D.V., Neiman, A.Ya., Animitsa, I.E., and Sharafutdinov, A.R., Elektrokhimiya, 2009, vol. 45, no. 5 [Rus. J. Electrochem. (Engl. Transl.), vol. 45, no. 5].

  16. Animitsa, I.E., Kochetova, N.A., and Neiman, A.Ya., Elektrokhimiya, 2009 (in press).

  17. Kochetova, N.A., Animitsa, I.E., and Neiman, A.Ya., Elektrokhimiya, 2009 (in press).

  18. Smolenskii, G.A., Isupov, V.A., and Pronin, I.P., in Problemy kristallografii: Sb. nauch. trudov (Problems of Crysallography: Collection of Works), Moscow: Nauka, 1987, p. 268.

    Google Scholar 

  19. Yukhnevich, G.V., Infrakrasnaya spektroskopiya vody (Infrared Spectroscopy of Water), Moscow: “Nauka”, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Animitsa.

Additional information

Original Russian Text © I.E. Animitsa, 2009, published in Elektrokhimiya, 2009, Vol. 45, No. 6, pp. 712–721.

Published by report at IX Conference “Fundamental Problems of Solid State Ionics”, Chernogolovka, 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Animitsa, I.E. High-temperature proton conductors with structure-disordered oxygen sublattice. Russ J Electrochem 45, 668–676 (2009). https://doi.org/10.1134/S1023193509060081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193509060081

Key words

Navigation