Skip to main content
Log in

A critical assessment of the Mott-Schottky analysis for the characterisation of passive film-electrolyte junctions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The widespread use of the Mott-Schottky plots to characterize the energetics of passive film/electrolyte junction is critically reviewed in order to point out the limitation of such approach in describing the electronic properties of passive film as well in deriving the correct location of the characteristic energy levels of the junction. The frequency dependency of M-S plots frequently observed in the experimental data gathered in a sufficiently large range of frequency is extensively discussed for a relatively thick (160 nm) thermally aged amorphous niobia (α-Nb2O5) film immersed in electrolytic solution. The relatively simple equivalent electrical circuit describing an ideally blocking behaviour of the junction allows a direct comparison of the experimental data analysis based on the use of Mott-Schottky or amorphous semiconductor Schottky barrier interpretative models. Moreover the theoretical simulations of the M-S plots based on the theory of crystalline semiconductor suggest an electronic structure of the investigated passive film containing a distribution of localized electronic states deep lying in energy in agreement with the model of amorphous semiconductor Schottky barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerischer, H., Electrochim. Acta, 1990, vol. 35, p. 1677.

    Article  CAS  Google Scholar 

  2. Gerischer, H., Corrosion Sci., 1989, vol. 29, 257.

    Article  CAS  Google Scholar 

  3. Di Quarto, F., La Mantia, F., and Santamaria, M., Modern Aspects of Electrochemistry, vol. 46, New York: Springer, 2009, p. 217.

    Google Scholar 

  4. Harrington, S.P. and Devine, T.M., J. Electrochem. Soc., 2008, vol. 155, p. C381.

    Article  CAS  Google Scholar 

  5. Di Quarto, F. and Santamaria, M., Corrosion Eng. Sci. Tech., 2004, vol. 39, p. 71.

    Article  Google Scholar 

  6. Gerischer, H., J. Electroanal. Chem., 1977, vol. 82, p. 133.

    Article  CAS  Google Scholar 

  7. Gerischer, H., J. Vac. Sci. Tech., 1978, vol. 15, p. 1422.

    Article  CAS  Google Scholar 

  8. Bard, A.J. and Wrighton, M.S., J. Electrochem. Soc., 1977, vol. 124, p. 1706.

    Article  CAS  Google Scholar 

  9. Brattain, W.H. and Garrett, C.G.B., Phys. Rev., 1954, vol. 94, p. 750.

    CAS  Google Scholar 

  10. Boddy, P.J. and Brattain, W.H., J. Electrochem. Soc., 1963, vol. 110, p. 70.

    Google Scholar 

  11. Dewald, J.F., Bell Syst. Tech. J., 1960, vol. 39, p. 615.

    Google Scholar 

  12. Dewald, J.F., J. Phys. Chem. Solid, 1960, vol. 14, p. 155.

    Article  CAS  Google Scholar 

  13. Green, M., Modern Aspects of Electrochemistry, vol. 2, London: Butterworths, 1959, p. 343.

    Google Scholar 

  14. Myamlin, V.A. and Pleskov, Y.V., Electrochemistry of Semiconductors, New York: Plenum Press, 1967.

    Google Scholar 

  15. Hamnett, A., Comprehensive Chemical Kinetics, vol. 27, Oxford: Elsevier Science, 1987, p. 61.

    Google Scholar 

  16. Di Quarto, F., La Mantia, F., and Santamaria, M., Electrochim. Acta, 2005, vol. 50, p. 5090.

    Article  Google Scholar 

  17. Di Quarto, F., La Mantia, F., and Santamaria, M., Passivation of Metals and Semiconductors, and Properties of Thin Oxide Layers, Paris: Elsevier, 2006, p. 343.

    Google Scholar 

  18. Di Quarto, F., La Mantia, F., and Santamaria, M., Corrosion Sci., 2007, vol. 49, p. 186.

    Article  Google Scholar 

  19. La Mantia, F., Santamaria, M., Habazaki, H., and Di Quarto, F., ECST, 2009, vol. 19, p. 411.

    Article  Google Scholar 

  20. Cohen, J.D. and Lang, D.V., Phys. Rev. B, 1982, vol. 25, p. 5321.

    Article  CAS  Google Scholar 

  21. Lang, D.V., Cohen, J.D., and Harbison, J.P., Phys. Rev. B, 1982, vol. 25, p. 5285.

    Article  CAS  Google Scholar 

  22. Abram, R.A., and Doherty, P.J., Phil. Mag. B, 1982, vol. 45, p. 167.

    Article  CAS  Google Scholar 

  23. Archibald, I.W. and Abram, R.A., Phil. Mag. B, 1983, vol. 48, p. 111.

    Article  CAS  Google Scholar 

  24. Archibald, I.W. and Abram, R.A., Phil. Mag. B, 1986, vol. 54, p. 421.

    CAS  Google Scholar 

  25. Habazaki, H., Ogasawara, T., Konno, H., Shimizu, K., Asami, K., Saito, K., Nagata, S., Skeldon, P., and Thompson, G.E., Electrochim. Acta, 2005, vol. 50, p. 5334.

    Article  CAS  Google Scholar 

  26. Habazaki, H., Yamasaki, M., Ogasawara, T., Fushimi, K., Konno, H., Shimizu, K., Izumi, T., Matsuoka, R., Skeldon, P., and Thompson, G.E., Thin Solid Films, 2008, vol. 516, p. 991.

    Article  CAS  Google Scholar 

  27. Habazaki, H., Matsuo, T., Konno, H., Shimizu, K., Matsumoto, K., Takayama, K., Oda, Y., Skeldon, P., and Thompson, G.E., Surface and Interface Analysis, 2003, vol. 35, p. 618.

    Article  CAS  Google Scholar 

  28. La Mantia, F., Santamaria, M., Di Quarto, F., and Habazaki, H., J. Electrochem. Soc., 2010, vol. 157, p. C258.

    Article  Google Scholar 

  29. Schneider, M., Schroth, S., Schilm, J., and Michaelis, A., Electrochim. Acta, 2009, vol. 54, p. 2663.

    Article  CAS  Google Scholar 

  30. Kong, D.S., Lu, W.H., Feng, Y.Y., Yu, Z.Y., Wu, J.X., Fan, W.J., and Liu, H.Y., J. Electrochem. Soc., 2009, vol. 156, p. C39.

    Article  CAS  Google Scholar 

  31. Harrington, S.P. and Devine, T.M., J. Electrochem. Soc., 2009, vol. 156, p. C154.

    Article  CAS  Google Scholar 

  32. Lu, Z.J. and Macdonald, D.D., Electrochim. Acta, 2008, vol. 53, p. 7696.

    Article  CAS  Google Scholar 

  33. Cardon, F. and Gomes, W.P., J. Phys. Appl. Phys., 1978, vol. 11, p. L63.

    CAS  Google Scholar 

  34. Morrison, S.R., Electrochemistry at Semiconductor and Oxidized Metal Electrodes, New York: Plenum Press, p. 1980.

  35. Hamnett, A., Comprehensive Chemical Kinetics, vol. 27, Oxford: Elsevier Science, 1987, p. 100.

    Google Scholar 

  36. Bockris, J.O. and Khan, S.U.M., Surface Electrochemistry, New York: Plenum Press, p. 1993.

  37. Di Quarto, F., Sunseri, C., Piazza, S., and Santamaria, M., in Handbook of Thin Films, Nalwa, H.S., Ed., San Diego: Academic Press, 2002, vol. 2, p. 373.

    Google Scholar 

  38. Losee, D.L., J. Appl Phys., 1975, vol. 46, p. 2204.

    Article  CAS  Google Scholar 

  39. Dean, M.H. and Stimming, U., Corrosion Sci., 1989, vol. 29, p. 199.

    Article  CAS  Google Scholar 

  40. Dean, M.H. and Stimming, U., J. Electroanal. Chem., 1987, vol. 228, p. 135.

    Article  CAS  Google Scholar 

  41. Mott, F.N. and Davis, E.A., Electronic Processes in Non-crystalline Materials, Oxford: Clarendon Press, 1979, p. 373.

    Google Scholar 

  42. Di Quarto, F., Sunseri, C., and Piazza, S., Ber. Bunsen Phys. Chem., 1986, vol. 90, p. 549.

    Google Scholar 

  43. da Fonseca, C., Ferreira, M.G., and da Cunha Belo, M., Electrochim. Acta, vol. 39, 1994, p. 2197.

    Article  Google Scholar 

  44. McAleer, J.F. and Peter, L.M., Faraday Discuss., 1980, vol. 70, p. 67.

    Article  Google Scholar 

  45. Gerischer, H., J. Phys. Chem., 1985, vol. 89, p. 4249.

    Article  CAS  Google Scholar 

  46. Heusler, K.E. and Schulze, M., Electrochim. Acta, 1975, vol. 20, p. 237.

    Article  CAS  Google Scholar 

  47. Munoz, A.G. and Staikov, G., J. Solid State Electrochem., 2006, vol. 10, p. 329.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Di Quarto.

Additional information

The article is published in the original.

The paper was prepared for a special issue dedicated to the birth centenary of Ya.M. Kolotyrkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Mantia, F., Habazaki, H., Santamaria, M. et al. A critical assessment of the Mott-Schottky analysis for the characterisation of passive film-electrolyte junctions. Russ J Electrochem 46, 1306–1322 (2010). https://doi.org/10.1134/S102319351011011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351011011X

Keywords

Navigation