Skip to main content
Log in

Mass transport to and within porous electrodes. Linear sweep voltammetry and the effects of pore size: The prediction of double peaks for a single electrode process

  • Special Issue of Journal Devoted to the Problems of Mass Transfer in the Electrochemical Systems
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

We simulate an electrode modified with a conducting porous film, where the electrolysis occurs both at the surface of the film and within it, in order to study the effect of pore size on the peak current in linear sweep voltammetry. For redox systems with reversible electrode kinetics we find that for both very large and very small pores the peak current is given by the Randles-Ševčik equation. For intermediate pore size, however, we observe a greatly enhanced peak current. When considering systems with irreversible electrode kinetics a very similar pattern is observed, except for the case of very small pores. In this case the peak current is actually smaller than expected from the Randles-Ševčik equation because the peak splits into two distinct peaks; one due to “thin layer” diffusion within the film and another caused by planar diffusion from bulk solution. The experimental implications of this observation are significant given the widespread use of modified electrodes for analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarcon-Angeles, G., Perez-Lopez, B., Palomar-Pardave, M., Ramirez-Silva, M.T., Alegret, S., and Merkoci, A., Carbon, 2008, vol. 46, p. 898.

    Article  CAS  Google Scholar 

  2. Hocevar, S., Wang, J., Deo, R., Musameh, M., and Ogorevc, B., Electroanalysis, 2005, vol. 17, p. 417.

    Article  CAS  Google Scholar 

  3. Hu, C.G., Wang, W.L., Liao, K.J., and Zhu, W., Acta Metall. Sin., 2003, vol. 16, p. 289.

    CAS  Google Scholar 

  4. Hu, C., Chen, X., and Hu, S., J. Electroanal. Chem., 2006, vol. 586, p. 77.

    Article  CAS  Google Scholar 

  5. Jiang, L.C. and Zhang, W.D., Electroanalysis, 2009, vol. 21, p. 1811.

    Article  CAS  Google Scholar 

  6. Jo, S., Jeong, H., Bae, S.R., and Jeon, S., Microchem. J., 2008, vol. 88, p. 1.

    Article  CAS  Google Scholar 

  7. Li, G. and Hao, J., J. Electrochem. Soc., 2009, vol. 159, p. 134.

    Article  Google Scholar 

  8. Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., Naeimi, H., and Nejati, M., Bioelectrochemistry, 2009, vol. 75, p. 1.

    Article  CAS  Google Scholar 

  9. Moraes, F.C., Cabral, M.F., Machado, S.A.S., and Mascaro, L.H., Electroanalysis, 2008, vol. 20, p. 851.

    Article  CAS  Google Scholar 

  10. Punbusayakul, N., Talapatra, S., Ci, L., Surareungchai, W., and Ajayan, P.M., Electrochem. Solid-State Lett., 2007, vol. 10, p. F13.

    Article  CAS  Google Scholar 

  11. Punbusayakul, N., Ci, L., Talapatra, S., Surareungchai, W., and Ajayan, P.M., J. Nanosci. Nanotechnol., 2008, vol. 8, p. 2085.

    Article  CAS  Google Scholar 

  12. Rodriguez, M.C., Rubianes, M.D., and Rivas, G.A., J. Nanosci. Nanotechnol., 2008, vol. 8, p. 6003.

    Article  CAS  Google Scholar 

  13. Rubianes, M.D. and Rivas, G.A., Electrochem. Commun., 2007, vol. 9, p. 480.

    Article  CAS  Google Scholar 

  14. Wang, H., Li, T., Jia, W., and Xu, H., Biosens. Bioelectron., 2006, vol. 22, p. 664.

    Article  Google Scholar 

  15. Wang, Z., Liu, J., Liang, Q., Wang, Y., and Luo, G., Analyst, 2002, vol. 127, p. 653.

    Article  CAS  Google Scholar 

  16. Wu, K. and Hu, S., Microchim. Acta, 2004, vol. 144, p. 131.

    Article  CAS  Google Scholar 

  17. Yogeswaran, U. and Chen, S., Sens. Actuators B, 2008, vol. B130, p. 739.

    Article  CAS  Google Scholar 

  18. Zhang, Y., Pan, Y., Su, S., Zhang, L., Li, S., and Shao, M., Electroanalysis, 2007, vol. 19, p. 1695.

    Article  CAS  Google Scholar 

  19. Jiao, S., Li, M., Wang, C., Chen, D., and Fang, B., Electrochim. Acta, 2007, vol. 52, p. 5939.

    Article  CAS  Google Scholar 

  20. Aslanoglu, M., Abbasoglu, S., Karabulut, S., and Kutluay, A., Acta Chim. Slov., 2007, vol. 54, p. 834.

    CAS  Google Scholar 

  21. Bouchta, D., Izaoumen, N., Zejli, H., El Kaoutit, M., and Temsamani, K.R., Anal. Lett., 2005, vol. 38, p. 1019.

    Article  CAS  Google Scholar 

  22. Cao, X., Luo, L., Ding, Y., Zou, X., and Bian, R., Sens. Actuators B, 2008, vol. B129, p. 941.

    Article  CAS  Google Scholar 

  23. Castro, S.S.L., Mortimer, R.J., de Oliveira, M.F., and Stradiotto, N.R., Sensors, 2008, vol. 8, p. 1950.

    Article  CAS  Google Scholar 

  24. Chang, H., Kim, D.I., and Park, Y.C., Electroanalysis, 2006, vol. 18, p. 1578.

    Article  CAS  Google Scholar 

  25. Chen, H.Y., Yu, A.M., and Zhang, H.L., J. Anal. Chem., 1997, vol. 358, p. 863.

    CAS  Google Scholar 

  26. Chen, J., Zhang, J., Lin, X., Wan, H., and Zhang, S., Electroanalysis, 2007, vol. 19, p. 612.

    Article  CAS  Google Scholar 

  27. Chen, Y., Yuan, J., Wang, X., and Tian, C., Anal. Sci., 2004, vol. 20, p. 1725.

    Article  CAS  Google Scholar 

  28. Chou, J., Ilgen, T.J., Gordon, S., Ranasinghe, A.D., McFarland, E.W., Metiu, H., and Buratto, S.K., J. Electroanal. Chem., 2009, vol. 632, p. 97.

    Article  CAS  Google Scholar 

  29. Codognoto, L., Winter, E., Paschoal, J.A.R., Suffredini, H.B., Cabral, M.F., Machado, S.A.S., and Rath, S., Talanta, 2007, vol. 72, p. 427.

    Article  CAS  Google Scholar 

  30. De Toledo, R.A., Santos, M.C., Cavalheiro, E.T.G., and Mazo, L.H., Anal. Bioanal. Chem., 2005, vol. 381, p. 1161.

    Article  Google Scholar 

  31. Dalmia, A., Liu, C.C., and Savinell, R.F., J. Electroanal. Chem., 1997, vol. 430, p. 205.

    Article  CAS  Google Scholar 

  32. De Cassia Silva Luz, R., Santos Damos, F., Bof de Oliveira, A., Beck, J., and Kubota, L.T., Electrochim. Acta, 2005, vol. 50, p. 2675.

    Article  Google Scholar 

  33. Ensafi, A.A., Taei, M., and Khayamian, T., J. Electroanal. Chem., 2009, vol. 633, p. 212.

    Article  CAS  Google Scholar 

  34. Erdogdu, G., Mark, Jr., H.B., and Karagozler, A.E., Anal. Lett., 1996, vol. 29, p. 221.

    Article  CAS  Google Scholar 

  35. Fang, B., Liu, H., Wang, G., Zhou, Y., Jiao, S., and Gao, X., J. Appl. Polym. Sci., 2007, vol. 104, p. 3864.

    Article  CAS  Google Scholar 

  36. Gopalan, A.I., Lee, K., Manesh, K.M., Santhosh, P., Kim, J.H., and Kang, J.S., Talanta, 2007, vol. 71, p. 1774.

    Article  CAS  Google Scholar 

  37. Harish, S., Mathiyarasu, J., Phani, K.L.N, and Yegnaraman, V., J. Appl. Eiectrochem., 2008, vol. 38, p. 1583.

    Article  CAS  Google Scholar 

  38. Hirakawa, K., Imato, T., Yamasaki, S., and Ohura, H., Proc. Eiectrochem. Soc., 2004, vol. 2004-08, p. 438.

    CAS  Google Scholar 

  39. Hu, W., Sun, D., and Ma, W., Chem. Anal., 2008, vol. 53, p. 703.

    CAS  Google Scholar 

  40. Huang, P.F., Wang, L., Bai, J.Y., Wang, H.J., Zhao, Y.Q., and Fan, S.D., Microchim. Acta, 2007, vol. 157, p. 41.

    Article  CAS  Google Scholar 

  41. Huang, X., Li, Y., Wang, P., and Wang, L., Anal. Sci., 2008, vol. 24, p. 1563.

    Article  Google Scholar 

  42. Jiang, X. and Lin, X., Anal. Chim. Acta, 2005, vol. 537, p. 145.

    Article  CAS  Google Scholar 

  43. Jin, G., Lin, X., and Gong, J., J. Electroanal. Chem., 2004, vol. 569, p. 135.

    Article  CAS  Google Scholar 

  44. Ju, H., Ni, J., Gong, Y., Chen, H., and Leech, D., Anal. Lett., 1999, vol. 32, p. 2951.

    Article  CAS  Google Scholar 

  45. Kang, G. and Lin, X., Electroanalysis, 2006, vol. 18, p. 2458.

    Article  CAS  Google Scholar 

  46. Lai, G., Zhang, H., and Han, D., Microchim. Acta, 2008, vol. 160, p. 233.

    Article  CAS  Google Scholar 

  47. Lakshmi, D., Bossi, A., Whitcombe, M.J., Chianelia, I., Fowler, S.A., Subrahmanyam, S., Piletska, E.V., and Piietsky, S.A., Anal. Chem., 2009, vol. 81, p. 3576.

    Article  CAS  Google Scholar 

  48. Li, J. and Lin, X., Sens. Actuators B, 2007, vol. B124, p. 486.

    Article  CAS  Google Scholar 

  49. Lin, L., Chen, J., Yao, H., Chen, Y., Zheng, Y., and Lin, X., Bioelectrochemistry, 2008, vol. 73, p. 11.

    Article  CAS  Google Scholar 

  50. Lin, X., Zhang, Y., Chen, W., and Wu, P., Sens. Actuators B, 2007, vol. B122, p. 309.

    Article  CAS  Google Scholar 

  51. Lupu, S., Rev. Roum. Chim., 2005, vol. 50, p. 213.

    CAS  Google Scholar 

  52. Ma, W. and Sun, D.M., Russ. J. Electrochem., 2007, vol. 43, p. 1382.

    Article  CAS  Google Scholar 

  53. Mathiyarasu, J., Senthilkumar, S., Phani, K.L.N., and Yegnaraman, V., J. Nanosci. Nanotechnol., 2007, vol. 7, p. 2206.

    Article  CAS  Google Scholar 

  54. Niwa, O., Morita, M., and Tabei, H., Electroanalysis, 1994, vol. 6, p. 237.

    Article  CAS  Google Scholar 

  55. Raoof, J., Ojani, R., and Rashid-Nadimi, S., Electrochim. Acta, 2005, vol. 50, p. 4694.

    Article  CAS  Google Scholar 

  56. Rocha, L.S. and Carapuca, H.M., Bioelectrochemistry, 2006, vol. 69, p. 258.

    Article  CAS  Google Scholar 

  57. Roy, P.R., Okajima, T. and Ohsaka, T., Bioelectrochemistry, 2003, vol. 59, p. 11.

    Article  CAS  Google Scholar 

  58. Rubianes, M.D. and Rivas, G.A., Anal. Chim. Acta, 2001, vol. 440, p. 99.

    Article  CAS  Google Scholar 

  59. Selvaraju, T. and Ramaraj, R., J. Appl. Electrochem., 2003, vol. 33, p. 759.

    Article  CAS  Google Scholar 

  60. Selvaraju, T. and Ramaraj, R., J. Electroanal. Chem., 2005, vol. 585, p. 290.

    Article  CAS  Google Scholar 

  61. Sezer, E., Yavuz, O., and Sarac, A.S., J. Electrochem. Soc., 2000, vol. 147, p. 3771.

    Article  CAS  Google Scholar 

  62. Shahrokhian, S. and Zare-Mehrjardi, H.R., Electroanalysis, 2009, vol. 21, p. 157.

    Article  CAS  Google Scholar 

  63. Sun, Y., Ye, B., Zhang, W., and Zhou, X., Anal. Chim. Acta, 1998, vol. 363, p. 75.

    Article  CAS  Google Scholar 

  64. Totir, N.D., Lupu, S.S., and Ungureanu, E.M., Proc. Electrochem. Soc., 2001, vol. 2000-20, p. 196.

    CAS  Google Scholar 

  65. Wan, Q., Wang, X., Wang, X., and Yang, N., Polymer, 2006, vol. 47, p. 7684.

    Article  CAS  Google Scholar 

  66. Wang, X., Yang, N., Wan, Q., and Wang, X., Sens. Actuators B, 2007, vol. B128, p. 83.

    Article  CAS  Google Scholar 

  67. Yang, Y., Lei, C., Liu, Z., Liu, Y., Shen, G., and Yu, R., Anal. Lett., 2004, vol. 37, p. 2267.

    Article  CAS  Google Scholar 

  68. Yao, H., Sun, Y., Lin, X., Tang, Y., and Huang, L., Electrochim. Acta, 2007, vol. 52, p. 6165.

    Article  CAS  Google Scholar 

  69. Ye, F., Nan, J., Wang, L., Song, Y., and Kim, K., Electrochim. Acta, 2008, vol. 53, p. 4156.

    Article  CAS  Google Scholar 

  70. Yi, S., Chang, H., Cho, H., Park, Y.C., Lee, S.H., and Bae, Z., J. Eiectroanal. Chem., 2007, vol. 602, p. 217.

    Article  CAS  Google Scholar 

  71. Yu, A., Sun, D., and Chen, H., Anal. Lett., 1997, vol. 30, p. 1643.

    Article  CAS  Google Scholar 

  72. Yuan, S., Chen, W., and Hu, S., Mater. Sci. Eng. C, 2005, vol. C25, p. 479.

    Article  CAS  Google Scholar 

  73. Zare, H.R., Rajabzadeh, N., Nasirizadeh, N., and Mazloum Ardakani, M., J. Electroanal. Chem., 2006, vol. 589, p. 60.

    Article  CAS  Google Scholar 

  74. Zhang, Y., Jin, G., Cheng, W., and Li, S., Front. Biosci., 2005, vol. 10, p. 23.

    Article  CAS  Google Scholar 

  75. Zhang, Y., Su, S., Pan, Y., Zhang, L., and Cai, Y., Ann. Chim., 2007, vol. 97, p. 665.

    Article  CAS  Google Scholar 

  76. Zhao, H., Zhang, Y., and Yuan, Z., Anal. Chim. Acta, 2001, vol. 441, p. 117.

    Article  CAS  Google Scholar 

  77. Zhao, H., Zhang, Y., and Yuan, Z., Electroanalysis, 2002, vol. 14, p. 1031.

    Article  CAS  Google Scholar 

  78. Zhao, H., Zhang, Y., and Yuan, Z., Analyst, 2001, vol. 126, p. 358.

    Article  CAS  Google Scholar 

  79. Zhou, L., Shang, F., Pravda, M., Glennon, J.D., and Luong, J.H.T., Electroanalysis, 2009, vol. 21, p. 797.

    CAS  Google Scholar 

  80. Zhou, Y.Z., Zhang, L.J., Chen, S.L., Dong, S.Y., and Zheng, X.H., Chin. Chem. Lett., 2009, vol. 20, p. 217.

    Article  CAS  Google Scholar 

  81. Zhu, X. and Lin, X., Chin. J. Chem., 2009, vol. 27, p. 1103.

    Article  CAS  Google Scholar 

  82. Henstridge, M.C., Dickinson, E.J.F., Aslanoglu, M., Batchelor-McAuley, C., and Compton, R.G., Sens. Actuators B, 2010, vol. 145, p. 417.

    Article  Google Scholar 

  83. Dickinson, E.J.F., Limon-Petersen, J.G., Rees, N.V., and Compton, R.G., J. Phys. Chem. C, 2009, vol. 113, p. 11157.

    Article  CAS  Google Scholar 

  84. Sims, M.J., Rees, N.V., Dickinson, E.J.F., and Compton, R.G., Sens. Actuators B, 2010, vol. 114, p. 153.

    Article  Google Scholar 

  85. Reiler, H., Kirowa-Eisner, E., and Gileadi, E., J. Electroanal. Chem., 1982, vol. 138, p. 65.

    Article  Google Scholar 

  86. Brookes, B.A., Davies, T.J., Fisher, A.C., Evans, R.G., Wilkins, S.J., Yunus, K., Wadhawan, J.D., and Compton, R.G., J. Phys. Chem. B, 2003, vol. 107, p. 1616.

    Article  CAS  Google Scholar 

  87. Davies, T.J. and Compton, R.G., J. Electroanal. Chem., 2005, vol. 585, p. 63.

    Article  CAS  Google Scholar 

  88. Davies, T.J., Moore, R.R., Banks, C.E., and Compton, R.G., J. Electroanal. Chem., 2004, vol. 574, p. 123.

    Article  CAS  Google Scholar 

  89. Davies, T.J., Ward-Jones, S., Banks, C.E., del Campo, J., Mas, R., Munoz, F.X., and Compton, R.G., J. Electroanal. Chem., 2005, vol. 585, p. 51.

    Article  CAS  Google Scholar 

  90. Dickinson, E.J.F. and Compton, R.G., J. Phys. Chem. C, 2009, vol. 113, p. 17585.

    Article  CAS  Google Scholar 

  91. Henstridge, M.C., Dickinson, E.J.F., and Compton, R.G., Chem. Phys. Lett., 2010, vol. 485, p. 167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Compton.

Additional information

Published in Russian in Elektrokhimiya, 2012, Vol. 48, No. 6, pp. 698–705.

The article is published in the original.

To be submitted to the Russian Journal of Electrochemistry: Special Issue on Mass Transport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henstridge, M.C., Dickinson, E.J.F. & Compton, R.G. Mass transport to and within porous electrodes. Linear sweep voltammetry and the effects of pore size: The prediction of double peaks for a single electrode process. Russ J Electrochem 48, 629–635 (2012). https://doi.org/10.1134/S1023193512060043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512060043

Keywords

Navigation