Skip to main content
Log in

Quantum chemical calculations of intracell potential profile in superionic transition range in LaF3

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The results of quantum chemical calculations of the potential profile in the LaF3 crystal lattice in the range of superionic phase transition are presented for clusters containing 24 to 1200 ions. It is found that the values of formation energy E a of vacancy-interstitial fluoride ion defects and potential barriers E d hindering the movement of fluoride ions and determining the efficiency of charge transport in the lattice grow monotonously from the minimum values E a = 0.12 eV and E d = 0.22 eV for a 24-ion cluster to the maximum E a = 0.16 eV and E d = 0.26 eV for clusters of 576 and 1200 ions. It is shown that the values of E a and E d obtained for the dielectric phase (T < T c) are several times the values of E a and E d for the superionic state (TT c) of LaF3. The values of E a and E d obtained by quantum chemical calculations from clusters of 576 and 1200 ions agree well with energies E a and E d obtained from the analysis of the data of the Raman and quasielastic light scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rhandour, A., Reau, J.M., Matar, S.F., et al., Mater. Res. Bull., 1985, vol. 20, p. 1309.

    Article  CAS  Google Scholar 

  2. Garashina, L.S., Sobolev, B.P., Aleksandrov, V.B., et al., Kristallografiya, 1980, vol. 25, no. 2, p. 294.

    CAS  Google Scholar 

  3. Tien, C., Charnaya, E.V., and Sherman, A.B., Fiz. Tverd. Tela, 2004, vol. 46, no. 9, p. 1578.

    Google Scholar 

  4. El Omari, M., Sénegas, J., and Réau, J.-M., Solid State Ionics, 1998, vol. 107, p. 281.

    Article  Google Scholar 

  5. Privalov, A.F., Lips, O., and Fujara, F., J. Phys.: Condens. Matter., 2002, vol. 14, p. 4515.

    CAS  Google Scholar 

  6. Voronin, B.M. and Volkov, S.V., Russ. J. Electrochem., 2004, vol. 40, no. 1, p. 51.

    Google Scholar 

  7. Ngoepe, P.E., Jordan, W.M., Catlov, C.R.A., et al., Phys. Rev., vol. 41, no. 6, p. 3815.

  8. Krivorotov, V.F., Khabibullaev, P.K., and Sharipov, Kh.T., Neorgan. Mater., 2010, vol. 46, no. 6, p. 745.

    Google Scholar 

  9. Physics of Superionic Conductors, Salamon, M.B., Ed., Berlin, Heidelberg, New York: Springer-Verlag, 1979.

    Google Scholar 

  10. Trnovcova, V., Garashina, L.S., Skubla, A., et al., Solid State Ionics, 2003, vol. 157, p. 195.

    Article  CAS  Google Scholar 

  11. Abdulchalikova, N.R., Aliev, A.E., Krivorotov, V.F., et al., Solid State Ionics, 1998, vol. 107, p. 59.

    Article  CAS  Google Scholar 

  12. Aniya, M. and Ichihara, S., J. Phys. Chem. Solids, 2005, vol. 66, p. 288.

    Article  CAS  Google Scholar 

  13. Tien, A., Charnaya, E.V., Plotnikov, P.G., et al., Phys. Rev., 2002, vol. 65, p. 134306(5).

    Google Scholar 

  14. Gotlib, Yu.I., Piotrovskaya, E.M., and Murin, I.V., Comput. Mater. Sci., 2006, vol. 36, p. 73.

    Article  CAS  Google Scholar 

  15. Krivorotov, V.F., Trudy Nauchno-Prakticheskogo seminara “Lazernaya fizika, prikladnye aspekty optiki i lazernoi fiziki”. NUUz im. Mirzo Ulugbeka (Proceedings of Scientific-Practical Seminar “Laser Physics, Applied Aspects of Optics and Laser Physics,” M. Ulugbek Research Institute), Tashkent, December 22, 2006.

    Google Scholar 

  16. Krivorotov, V.F., Khabibullaev, P.K., Fridman, A.A., et al., Neorgan. Mater., 2010, vol. 46, no. 7, p. 875.

    Google Scholar 

  17. Krivorotov, V.F., Khabibullaev, P.K., Fridman, A.A., et al., Neorgan. Mater., 2010, vol. 46, no. 10, p. 1263.

    Google Scholar 

  18. Khabibullaev, P.K., Fershtat, L.N., and Aliev, A.E., Dokl. Akad. Nauk SSSR, 1985, vol. 281, no. 2, p. 320.

    CAS  Google Scholar 

  19. Urusov, V.S., Teoreticheskaya kristallokhimiya (Theoretical Crystallochemistry), Moscow: Izd-vo MGU, 1987.

    Google Scholar 

  20. MOPAC 2009, Stewart, J.J.P., Stewart Computational Chemistry, Colorado Springs, CO, USA, http://open-mopac.net.

    Google Scholar 

  21. Koordinatsionnaya khimiya redkozemel’nykh elementov (Coordination Chemistry of Rare Earths) Spitsyn, V.I., Martynenko, L.I., Eds., Moscow: Izd-vo MGU, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Krivorotov.

Additional information

Original Russian Text © V.F. Krivorotov, G.S. Nuzhdov, A.A. Fridman, E.V. Charnaya, 2013, published in Rusian in Elektrokhimiya, 2013, Vol. 49, No. 12, pp. 1285–1291.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivorotov, V.F., Nuzhdov, G.S., Fridman, A.A. et al. Quantum chemical calculations of intracell potential profile in superionic transition range in LaF3 . Russ J Electrochem 49, 1154–1159 (2013). https://doi.org/10.1134/S1023193513010096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193513010096

Keywords

Navigation