Skip to main content
Log in

The Effect of Electrochemical and Gas Phase Activation of High Surface Area Carbon Black Ketjen Black EC 600 DJ on Its Surface Composition, Electrochemical Capacitance, and Stability

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of electrochemical and gas-phase activation of high-surface-area carbon black Ketjen Black EC 600 DJ on its stability and electrochemical capacitance is studied. The electrochemical activation is carried out according to the “start–stop” protocol (1–1.5 V, 0.5 V/s). The stability of samples is assessed based on variation of their effective resistance (based on the results of cyclic voltammetry (CVA)) and electrochemical capacitance (based on CVA and galvanostatic data) with the cycle number. The changes in the texture and surface properties of activated samples are studied by the methods of nitrogen low-temperature adsorption and X-ray photoelectron spectroscopy. The gas-phase activation of high-surface-area carbon black Ketjen Black EС 600 DJ is shown to impair its stability, while the electrochemical oxidation of carbonblack samples leads to a considerable (two-fold) increase in their electrochemical capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., and Adroher, X.C., A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research, Appl. Energy, 2011, vol. 88, p.981.

    Article  CAS  Google Scholar 

  2. Yoshida, T. and Kojima, K., Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society, Electrochem. Soc. Interface, 2015, vol. 24, p.45.

    Article  CAS  Google Scholar 

  3. Young, A.P., Stumper, J., and Gyenge, E., Characterizing the structural degradation in a PEMFC cathode catalyst layer: carbon corrosion, J. Electrochem. Soc., 2009, vol. 156, p.913.

    Article  CAS  Google Scholar 

  4. Marcu, A., Toth, G., Kundu, S., Colmenares, L.C., and Behm, R.J., Ex situ testing method to characterize cathode catalysts degradation under simulated startup/shut-down conditions—A contribution to polymer electrolyte membrane fuel cell benchmarking, J. Power Sources, 2012, vol. 215, p.266.

    Article  CAS  Google Scholar 

  5. Shao-Horn, Y., Ferreira, P., Io, G.J., Morgan, D., Gasteiger, H., and Makharia, R., Coarsening of Pt nanoparticles in proton exchange membrane fuel cells upon potential cycling, ECS Trans., 2006, vol. 1, p.185.

    Article  CAS  Google Scholar 

  6. Zana, A., Speder, J., Roefzaad, M., Altmann, L., Baumer, M., and Arenz, M., Probing degradation by ILTEM: The influence of stress test conditions on the degradation mechanism, J. Electrochem. Soc., 2013, vol. 160, p.608.

    Article  CAS  Google Scholar 

  7. Kang, J., Jung, D.W., Park, S., Lee, J.-H., Ko, J., and Kim, J., Accelerated test analysis of reversal potential caused by fuel starvation during PEMFCs operation, Int. J. Hydrogen Energy, 2010, vol. 35, p. 3727.

    Article  CAS  Google Scholar 

  8. Siroma, Z., Ishii, K., Yasuda, K., Inaba, M., and Tasaka, A., Stability of platinum particles on a carbon substrate investigated by atomic force microscopy and scanning electron microscopy, J. Power Sources, 2007, vol. 171, p.524.

    Article  CAS  Google Scholar 

  9. Ettingshausen, F., Kleemann, J., Marcu, A., Toth, G., Fuess, H., and Roth, C., Dissolution and migration of platinum in PEMFCs investigated for start/stop cycling and high potential degradation, Fuel Cells, 2011, vol. 11, p.238.

    Article  CAS  Google Scholar 

  10. Schulenburg, H., Schwanitz., B, Krbanjevic, J., Linse, N., Scherer, G.G., and Wokaun, A., Quantification of platinum deposition in polymer electrolyte fuel cell membranes, Electrochem. Commun., 2011, vol. 13, p.921.

    Article  CAS  Google Scholar 

  11. Ball, S.C., Hudson, S.L., Thompsett, D., and Theobald, B., An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures, J. Power Sources, 2007, vol. 171, p.18.

    Article  CAS  Google Scholar 

  12. Maass, S., Finsterwalder, F., Frank, G., Hartmann, R., and Merten, C., Carbon support oxidation in PEM fuel cell cathodes, J. Power Sources, 2008, vol. 176, p.444.

    Article  CAS  Google Scholar 

  13. Dubau, L., Castanheira, L., Maillard, F., Chatenet, M., Lottin, O., Maranzana, G., Dillet, J., Lamibrac, A., Perrin, J.-C., Moukheiber, E., ElKaddouri, A., De Moor, G., Bas, C., Flandin, L., and Caqué, N., A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies, WIREs Energy Environ., 2014, vol. 3, p.540.

    Article  CAS  Google Scholar 

  14. Gribov, E.N., Kuznetsov, A.N., Voropaev, I.N., Golovin, V.A., Simonov, P.A., Romanenko, A.V., and Okunev, A.G., Analysis of the corrosion kinetic of Pt/C catalysts prepared on different carbon supports under the “start–stop” cycling, Electrocatal., 2016, vol. 7, p.159.

    Article  CAS  Google Scholar 

  15. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., and Zelenay, P., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.

    Article  CAS  PubMed  Google Scholar 

  16. Fernández, J.A., Morishita, T., Toyoda, M., Inagaki, M., Stoeckli, F., and Centeno, T.A., Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors, J. Power Sources, 2008, vol. 175, p.675.

    Article  CAS  Google Scholar 

  17. Vervikishko, D.E., Yanilkin, I.V., Atamanyuk, I.N., Sametov, A.A., Shkol’nikov, E.I., Dobele, G.V., and Volperts, A., Activated carbon for supercapacitor electrodes with an aqueous electrolyte, High Temp., 2015, vol. 53, p.758.

    Article  CAS  Google Scholar 

  18. Hu, C.C., Wang, C.C., and Chang, K.H., A comparison study of the capacitive behavior for sol–gel-derived and co-annealed ruthenium–tin oxide composites, Electrochim. Acta, 2007, vol. 52, p. 2691.

    Article  CAS  Google Scholar 

  19. Ryu, K.S., Kim, K.M., Park, N.G., Park, Y.J., and Chang, S.H., Symmetric redox supercapacitor with conducting polyaniline electrodes, J. Power Sources, 2002, vol. 103, p.305.

    Article  CAS  Google Scholar 

  20. Clemente, A., Panero, S., Spila, E., and Scrosati, B., Solid-state, polymer-based, redox capacitors, Solid State Ionics, 1996, vol. 85, p.273.

    Article  CAS  Google Scholar 

  21. Laforgue, A., Simon, P., Sarrazin, C., and Fauvarque, J.F., Polythiophene-based supercapacitors, J. Power Sources, 1999, vol. 80, p.142.

    Article  CAS  Google Scholar 

  22. Fan, L.Z. and Maier, J., High-performance polypyrrole electrode materials for redox supercapacitors, Electrochem. Commun., 2006, vol. 8, p.937.

    Article  CAS  Google Scholar 

  23. Fisher, R.A., Watt, M.R., and Ready, W.J., Functionalized carbon nanotube supercapacitor electrodes: A review on pseudocapacitive materials, ECS J. Solid State Sci. Technol., 2013, vol. 2, p. 3170.

    Article  CAS  Google Scholar 

  24. González, A., Goikolea, E., Barrena, J.A., and Mysyk, R., Review on supercapacitors: technologies and materials, Renewable Sustainable Energy Rev., 2016, vol. 58, p. 1189.

    Article  CAS  Google Scholar 

  25. Brunauer, S., Emmett, P.H., and Teller, E., Adsorption of gases in multimolecular layers, J. Amer. Chem. Soc., 1938, vol. 60, p.309.

    Article  CAS  Google Scholar 

  26. Mel’gunov, M.S. and Ayupov, A.B., Direct method for evaluation of BET adsorbed monolayer capacity, Microporous Mesoporous Mater., 2017, vol. 243, p.147.

    Article  CAS  Google Scholar 

  27. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution, Pure Appl. Chem., 2015, vol. 87, p. 1051.

    Article  CAS  Google Scholar 

  28. Llewellyn, P.L., Rodriquez-Reinoso, F., Rouqerol, J., and Seaton, N., Is the BET equation applicable to microporous adsorbents?, Stud. Surf. Sci. Catal., 2007, vol. 160 p.49.

    Article  Google Scholar 

  29. Ohma, A., Shinohara, K., Iiyama, A., Yoshida, T., and Daimaru, A., Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG, ECS Trans., 2011, vol. 41, p.775.

    Article  CAS  Google Scholar 

  30. Gribov, E.N., Kuznetzov, A.N., Golovin, V.A., Voropaev, I.N., Romanenko, A.V., and Okunev, A.G., Degradation of Pt/C catalysts in start–stop cycling tests, Russ. J. Electrochem., 2014, vol. 50, p. 700.]

    Article  CAS  Google Scholar 

  31. Li, Sh.-M., Yang, Sh.-Yi, Wang, Yu.-Sh., Tsai, H.P., Tien, H.W., Hsiao, Sh.-T., Liao, W.-H., Chang, Ch.-L., Ma, Ch.-Ch.M., and Hu, Ch.-Ch., N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte, J. Power Sources, 2015, vol. 278, p.218.

    Article  CAS  Google Scholar 

  32. Mai, L.Q., Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance, Nature Commun., 2013, vol.4.

  33. Tarasevich, M.R., Bogdanovskaya, V.A., and Zagudaeva, N.M., Redox reactions of quinones on carbon materials., J. Electroanal. Chem., 1987, vol. 223, p.161.

    Article  CAS  Google Scholar 

  34. Regisser, F., Lavoie, M.-A., Champagne, G.Y., and Belanger, D., Randomly oriented graphite electrode. Part 1. Effect of electrochemical pretreatment on the electrochemical behavior and chemical composition of the electrode, J. Electroanal. Chem., 1996, vol. 415, p.47.

    Article  CAS  Google Scholar 

  35. Gribov, E.N., Maltseva, N.V., Golovin, V.A., and Okunev, A.G., A simple method for estimating the electrochemical stability of the carbon materials, Int. J. Hydrogen Energy, 2016, vol. 41, p. 18207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Maltseva.

Additional information

Original Russian Text © N.V. Maltseva, V.A. Golovin, Yu.O. Chikunova, E.N. Gribov, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 5, pp. 489–496.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltseva, N.V., Golovin, V.A., Chikunova, Y.O. et al. The Effect of Electrochemical and Gas Phase Activation of High Surface Area Carbon Black Ketjen Black EC 600 DJ on Its Surface Composition, Electrochemical Capacitance, and Stability. Russ J Electrochem 54, 426–432 (2018). https://doi.org/10.1134/S102319351805004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351805004X

Keywords

Navigation