Skip to main content
Log in

Heat Transfer and Thermocapillary Convection during the Laser Deposition of Metal Powders Implemented in Additive Technologies

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Heat-transfer- and thermocapillary-convection macroprocesses observed during direct laser metal deposition (DLMD) with coaxial powder injection are examined. The study is performed using the 3D mathematical model incorporating self-consistent equations for free surface evolution, heat transfer, and hydrodynamics, which allow for powder-particle embedding into the thermocapillary convection zone under DLMD. The processes under consideration refer to the main ones underlying additive laser technologies, which determine the microstructural properties and quality of synthesized parts. The convection-diffusion equations are numerically solved using the final volume method. Calculations are carried out for the thermocapillary convection of H13 steel powder. The influence of laser-radiation characteristics (power, scanning rate, intensity distribution in the beam) and the powder-mass flow velocity on temperature fields, the structure of convective melt flow (including a maximum melt velocity), and the geometric characteristics (height and width) of the object formed is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ya. Panchenko, V. S. Golubev, V. V. Vasil’tsov, et al., Laser Technologies for Materials Processing: Modern Problems on Fundamental Researches and Applied Developments, Ed. by V. Ya. Panchenko (Fizmatlit, Moscow, 2009) [in Russian].

  2. I. V. Shishkovskii, Laser Synthesis of Functional Mesostructures and Volumetric Units (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  3. G. G. Gladush and I. Smurov, Physics of Laser Materials Processing: Theory and Experiment (Springer, Berlin, 2011).

    Book  Google Scholar 

  4. L. Han, F. W. Liou, and K. M. Phatak, Metall. Trans. B 35, 1139 (2004).

    Article  Google Scholar 

  5. A. Frenk, M. Vandyoussefi, J.-D. Wagniere, et al., Metall. Mater. Trans. B 28, 501 (1997).

    Article  Google Scholar 

  6. V. G. Niz’ev, F. Kh. Mirzade, V. Ya. Panchenko, et al., Math. Models Comput. Simul. 4 (2), 163 (2012).

    Article  Google Scholar 

  7. B. Ollier, N. Pirch, E. W. Krentz, and H. Schluter, in Proc. European Conference on Laser Treatment of Materials ECLAT’92, Ed. B. L. Mordike (Gottigen, 1992), p. 687

  8. S.-L. Wang, R. F. Sekerka, A. A. Wheeler, et al., Phys. D (Amsterdam, Neth.) 69, 189 (1993).

    Article  Google Scholar 

  9. J. A. Warren and W. J. Boettinger, Acta Metall. Mater. 43, 689 (1995).

    Article  Google Scholar 

  10. Z. Bi and R. F. Sekerka, Phys. A (Amsterdam, Neth.) 261, 95 (1998).

    Article  Google Scholar 

  11. O. Penrose and P. C. Fife, Phys. D (Amsterdam, Neth.) 3, 44 (1990).

    Article  Google Scholar 

  12. F. Kh. Mirzade, Zhurn. Prikl. Spektr. 83 (6–16), 559 (2016) [in Russian].

    Google Scholar 

  13. S. Osher and J. A. Sethian, J. Comput. Phys. 79, 12 (1998).

    Article  Google Scholar 

  14. E. Olsson and G. Kreiss, J. Comput. Phys. 210, 225 (2005).

    Article  Google Scholar 

  15. C. Hirt and B. Nichols, J. Comput. Phys. 39, 201 (1981).

    Article  Google Scholar 

  16. J. Choi, L. Han, and Y. Hua, J. Heat Transfer 127 (9), 978 (2005).

    Article  Google Scholar 

  17. Z. Fan, J. K. Stroble, J. Ruan, et al., in Proc. ASME 2007 Int. Manufacturing Science and Engineering Conference (Atlanta, GA, 2007), p.37.

    Book  Google Scholar 

  18. D. V. Bedenko, O. B. Kovalev, I. Smurov, and A. V. Zaitsev, Int. J. Heat Mass Transfer 95, 902 (2016).

    Article  Google Scholar 

  19. F. Kh. Mirzade, Proc. SPIE 10330, 10330 (2017).

    Google Scholar 

  20. W. D. Bennon and F. P. Incropera, Int. J. Heat Mass Transfer 30, 2161 (1987).

    Article  Google Scholar 

  21. A. Albadawi, D. B. Donoghue, A. J. Robinson, et al., Int. J. Multiphase Flow 53, 11 (2013).

    Article  Google Scholar 

  22. K. Yokoi, J. Comput. Phys. 278, 221 (2014).

    Article  Google Scholar 

  23. V. R. Voller and C. R. Swaminathan, Numer. Heat Transfer, Part B 19, 175 (1991).

    Article  Google Scholar 

  24. H. Qi, J. Mazumder, and H. Ki, J. Appl. Phys. 100 (2), 024903 (2006).

    Article  Google Scholar 

  25. S. Morville, M. Carin, P. Peyre, et al., J. Laser Appl. 24 (3), 032008 (2012).

    Article  Google Scholar 

  26. H. O. Zhang, F. R. Kong, G. L. Wang, and L. F. Zeng, J. Appl. Phys. 100 (12), 123522 (2006).

    Article  Google Scholar 

  27. J. Mazumder, A. Schifferer, and J. Choi, Mater. Res. Innovations 3 (3), 118 (1999).

    Article  Google Scholar 

  28. J. T. Hofman, B. Pathiraj, J. Van Dijk, et al., J. Mater. Process. Technol. 212 (11), 2455 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dubrov.

Additional information

Original Russian Text © A.V. Dubrov, F.Kh. Mirzade, V.D. Dubrov, V.Ya. Panchenko, 2018, published in Poverkhnost’, 2018, No. 1, pp. 65–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrov, A.V., Mirzade, F.K., Dubrov, V.D. et al. Heat Transfer and Thermocapillary Convection during the Laser Deposition of Metal Powders Implemented in Additive Technologies. J. Surf. Investig. 12, 54–63 (2018). https://doi.org/10.1134/S1027451018010081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018010081

Keywords

Navigation