Skip to main content
Log in

An indirect evidence of piezonuclear fission reactions: Geomechanical and geochemical evolution in the Earth’s crust

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

This article was retracted on 01 October 2017

This article has been updated

Abstract

Piezonuclear reactions, which occur in inert and nonradioactive elements, are induced by high pressure and, in particular, by brittle fracture phenomena in solids under compression. These low energy reactions generally take place in nuclei with an atomic weight that is lower or equal to that of iron (Fe). The experimental evidence, obtained from repeatable measurements of neutron emissions, can be also recognized considering the anomalous chemical balances of the major events that have affected the Earth’s crust, oceans and atmosphere, over the last four billion years. These anomalies include: (i) the abrupt variations in the most abundant elements in correspondence to the formation of tectonic plates; (ii) the Great Oxidation Event (2.7 to 2.4 billion years ago), with a sharp increase in atmospheric oxygen and the subsequent origin of life; (iii) the increase of carbon and nytrogen concentrations in the primordial atmosphere.

Natural piezonuclear reactions are induced by fault sliding and plate subduction phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 13 December 2017

    "The Editor-in-Chief is retracting this article [1] because it contains a significant amount of overlap with [2]."

References

  1. E. Kolb, Blind Watchers of the Sky: The People and Ideas That Shaped Our View of the Universe, Oxford University Press, Oxford, 2000.

    Google Scholar 

  2. E. Kolb, S. Matarrese, S. Notari, and A. Riotto, Primordial inflation explains why the universe is accelerating today, 2005, arXiv:hep-th/0503117v1, 1.

  3. G. Favero and P. Jobstraibizer, The distribution of aluminum in the Earth: from cosmogenesis to Sial evolution, Coordin. Chem. Rev., 149 (1996) 367.

    Google Scholar 

  4. S.R. Taylor and S.M. McLennan, The geochemical evolution of the continental crust, Rev. Geophys., 33(2) (1995) 241.

    Article  ADS  Google Scholar 

  5. S.R. Taylor and S.M. McLennan, Planetary Crusts: Their Composition, Origin and Evolution, Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  6. A.D. Anbar, Elements and evolution, Science, 322 (2008) 1481.

    Article  ADS  Google Scholar 

  7. C.J. Hawkesworth and A.I. Kemp, Evolution of the continental crust, Nature, 443 (2006) 811.

    Article  ADS  Google Scholar 

  8. D.E. Canfiled, A new model for Proterozoic ocean chemistry, Nature, 396 (1998) 450.

    Article  ADS  Google Scholar 

  9. R.P. Williams and F.J.R. Da Silva, Evolution was chemically constrained, J. Theor. Biol., 220 (2003) 323.

    Article  Google Scholar 

  10. K.O. Buesseler, S.C. Doney, D.M. Karl, et al., Ocean iron fertilization moving forward in a sea of uncertainty, Science, 319 (2008) 162.

    Article  Google Scholar 

  11. H.D. Holland, The Chemical Evolution of the Atmosphere and Oceans, Princeton Univ. Press, Princeton, 1984.

    Google Scholar 

  12. H.D. Holland, The oxygenation of the atmosphere and oceans, Philos. Trans. R. Soc. London, Ser. B, 361 (2006) 903–915.

    Article  Google Scholar 

  13. L.R. Kump and M.E. Barley, Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago, Nature, 448, 1033.

  14. V.N. Kholodov and G.Y. Butuzova, Siderite formation and evolution on sedimentary iron ore deposition in the Earth’s history, Geology of Ore Dep., 50(4) (2008) 299.

    Article  ADS  Google Scholar 

  15. K.O. Konhauser, E. Percoits, S.V. Lalonde, et al., Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event, Nature, 458 (2009) 750.

    Article  ADS  Google Scholar 

  16. M.A. Saito, Less nickel for more oxygen, Nature, 458 (2009) 714.

    Article  ADS  Google Scholar 

  17. A. Carpinteri, F. Cardone and G. Lacidogna, Piezonuclear neutrons from brittle fracture: Early results of mechanical compression tests, Strain, 45, 332.

  18. F. Cardone, A. Carpinteri, and G. Lacidogna, Piezonuclear neutrons from fracturing of inert solids, Phys. Lett. A, 373 (2009) 4158.

    Article  ADS  Google Scholar 

  19. Y. Arata and Y. Zhang, Achievement of solid-state plasma fusion (“cold-fusion”), Proc. Jpn Acad. B, 71 (1995) 304.

    Article  Google Scholar 

  20. Y. Arata, H. Fujita, and Y. Zhang, Intense deuterium nuclear fusion of pycnodeuterium-lumps coagulated locally within highly deuterated atom clusters, Proc. Jpn Acad. B, 78 (2002) 201.

    Article  Google Scholar 

  21. R.P. Taleyarkhan, C.D. West, J.S. Cho, R.T. Lahey, R.I. Nigmatulin, and R.C. Block, Evidence for nuclear emissions during acoustic cavitation, Science, 295 (2002) 1868.

    Article  ADS  Google Scholar 

  22. F. Cardone and R. Mignani, Deformed Spacetime, Springer, Dordrecht, 2007, Chapters 16–17.

    Book  MATH  Google Scholar 

  23. F. Cardone, G. Cherubini, and A. Petrucci, Piezonuclear neutrons, Phys. Lett. A, 373 (2009) 862.

    Article  ADS  Google Scholar 

  24. A. Carpinteri, A. Chiodoni, A. Manuello, and R. Sandrone, Compositional and microchemical evidence of piezonuclear fission reactions in rock specimens subjected to compression tests, Strain, 47,Suppl. 2 (2011) 282.

    Article  Google Scholar 

  25. A. Carpinteri and A. Manuello, Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earth’s crust, Strain, 47,Suppl. 2 (2011) 267.

    Article  Google Scholar 

  26. A. Carpinteri, Cusp catastrophe interpretation of fracture instability, J. Mech. Phys. Solids, 37 (1989) 567.

    Article  ADS  MATH  Google Scholar 

  27. A. Carpinteri, A catastrophe theory approach to fracture mechanics, Int. J. Fract., 44 (1990) 57.

    Article  MathSciNet  Google Scholar 

  28. A. Carpinteri and M. Corrado, An extended (fractal) overlapping crack model to describe crushing size-scale effects in compression, Eng. Fail. Anal., 16 (2009) 2530.

    Article  Google Scholar 

  29. G. Vola and M. Marchi, Quantitative phase analysis (QPA) of the Luserna Stone Period, Mineral, 79(2) (2010) 45.

    Google Scholar 

  30. C.M.R. Fowler, The Solid Earth: An Introduction to Global Geophysics, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  31. C. Doglioni, Interno della Terra, Enciclopedia Scienza e Tecnica, Treccani (2007) 595.

    Google Scholar 

  32. R.L. Rudnick and D.M. Fountain, Nature and composition of the continental crust: A lower crustal perspective, Rev. Geophys., 33(3) (1995) 267.

    Article  ADS  Google Scholar 

  33. B.M. Kuzhevskij, Y.O. Nechaev, E.A. Sigaeva, and VA. Zakharov, Neutron flux variations near the Earth’s crust. A possible tectonic activity detection, Nat. Hazards Earth Syst. Sci., 3 (2003) 637.

    Article  ADS  Google Scholar 

  34. B.M. Kuzhevskij, Y.O. Nechaev, and E.A. Sigaeva, Distribution of neutrons near the Earth’s surface, Nat. Hazards Earth Syst. Sci., 3 (2003) 255.

    Article  ADS  Google Scholar 

  35. N.N. Volodichev, B.M. Kuzhevskij, O.Yu. Nechaev, M.I. Panasyuk, A. Podorolsky, and PI. Shavrin, Sun-Moon-Earth connections: The neutron intensity splashes and seismic activity, Astron. Vestnik, 34(2) (2000) 188.

    Google Scholar 

  36. P.B. Kelemen, The origin of the land under the sea, Sci. Am., 300(2) (2009) 42.

    Article  Google Scholar 

  37. C.L. Dupont, S. Yang, B. Plenik, and P.E. Bourne, Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry, Proc. Natl Acad. Sci. USA, 103 (2006) 17822.

    Article  ADS  Google Scholar 

  38. W.S. Broecker, How to Build a Habitable Planet, Eldigio Press, New York, 1985.

    Google Scholar 

  39. E.J.I. Lunine, Earth: Evolution of a Habitable World, Cambridge University Press, Cambridge, 1998.

    Book  Google Scholar 

  40. R.M. Hazen, D. Papineau, W. Bleeker, et al., Mineral evolution, Am. Mineral., 93 (2008) 1693.

    Article  Google Scholar 

  41. K.C. Condie, Plate Tectonics and Crustal Evolution, Pergamon Press, New York, 1976.

  42. I. Roy, B.C. Sarkar, and A. Chattopadhyay, MINFO-a prototype mineral information database for iron ore resourcers of India, Comp. Geosci., 27 (2001) 357.

    Article  Google Scholar 

  43. World Iron Ore producers, http://www.mapsofworld.com/minerals/world-iron-ore-producers.html (last accessed October 2009).

  44. World Mineral Resources Map, http://www.mapsofworld.com/world-mineral-map.htm (last accessed October 2009).

  45. Key Iron Deposits of the World, http://www.portergeo.com.au/tours/iron2002/-iron2002depm2b.asp (last accessed October 2009).

  46. B. Foing, Earth’s childhood attic, Astrobiological Magazine: Retrospection (on-line), February 23 (2005).

  47. D. Sigman, S. Jaccard, and F. Hau, Polar ocean stratification in a cold climate, Nature, 428 (2004) 59.

    Article  ADS  Google Scholar 

  48. E.M. Galimov, Redox evolution of the Earth caused by a multistage formation of its core, Earth Planet. Sci. Lett., 233 (2005) 263.

    Article  ADS  Google Scholar 

  49. K.E. Yamaguchi, Evolution of the geochemical cycle of Fe trough geological time: Iron isotope perspective, Front. Res. Earth Evol., 2 (2005) 44.

    Google Scholar 

  50. I. Basile-Doelsch, Si stable isotope in the Earth’s surface: A review, J. Geochemical Expl., 88 (2006) 252.

    Article  Google Scholar 

  51. I. Basile-Doelsch, J.D. Meunier, and C. Parron, Another continental pool in the terrestrial silicon cycle, Nature, 433 (2005) 399.

    Article  ADS  Google Scholar 

  52. C.L. De la Rocha, M. Brzezinski, and M.J. DeNiro, A first look at the distribution of the stable isotopes of silicon in natural waters, Geochim. Cosmochim. Acta, 64(14) (2000) 2467.

    Article  ADS  Google Scholar 

  53. O. Ragueneau, L. Chavaud, A. Leynaert, et al., A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global Planet. Change, 26 (2000) 317.

    Article  ADS  Google Scholar 

  54. F. Egami, Minor elements and evolution, J. Molecular Evol., 4(2) (1975) 113.

    Article  Google Scholar 

  55. Medical and Biological Effects of Environmental Pollutants: Nickel, Natl. Res. Council, Natl. Acad. Sci., Washington, DC, 1975.

  56. A.A. Yaroshevsky, Abundances of chemical elements in the Earth’s crust, Geochem. Int., 44(1) (2006) 54.

    Article  Google Scholar 

  57. L. Liu, The inception of the oceans and CO2-atmosphere in the early history of the Earth, Earth Planet. Sci. Lett., 227 (2007) 179–184.

    Article  ADS  Google Scholar 

  58. C.D. Catling and K.J. Zahnle, The planetary air leak, Sci. Am., 300(5) (2009) 24.

    Article  Google Scholar 

  59. K. Aki, Strong Motion Seismology, in Earthquakes: Observation, Theory and Interpretation, Ed. By H. Kanamori and E. Boschi, North-Holland Pub. Co., Amsterdam, 1983.

    Google Scholar 

  60. E. Padron, G. Melian, R. Marrero, D. Nolasco, J. Barrancos, G. Padilla, P.A. Hernandez, and N.M. Perez, Changes in the diffuse CO2 emission and relation to seismic activity in and around El Hierro, Canary Islands, Pure Appl. Geophys., 165 (2008) 95.

    Article  ADS  Google Scholar 

  61. J.F. Kasting and T.P. Ackerman, Climatic consequences of very high carbon dioxide levels in the Earth’s early atmosphere, Science, 234 (1986) 1383.

    Article  ADS  Google Scholar 

  62. Y.L. Yung and W.B. De More, Photochemistry of Planetary Atmospheres, Oxford Univ. Press, New York, 1999.

    Google Scholar 

  63. D.L. Royer, R.A. Berner, I.P. Montanez, N.J. Tabor, and D.J. Beerling, CO2 as a primary driver of Phanerozoic climate, GSA Today, 14 (2004) 4.

    Article  Google Scholar 

  64. R.A. Berner, Atmospheric carbon dioxide levels over Phanerozoic time, Science, 249 (1990) 1382.

    Article  ADS  Google Scholar 

  65. R.A. Berner and Z. Kothavala, GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301 (2001) 182.

    Article  Google Scholar 

  66. R.A. Bergman, M. Noam, M.L. Timothy, and A.J. Watson, COPSE: a new model of biogeochemical cycling over Phanerozoic time, Am. J. Sci., 301 (2004) 182.

    Google Scholar 

  67. D.H. Rothman, Atmospheric carbon dioxide levels for the last 500 million years, Proc. Natl Acad. Sci. USA, 99 (2001) 4167.

    Article  ADS  Google Scholar 

  68. H. Fischer, M. Wahlen, J. Smith, D. Mastroianni, and B. Deck, Ice core records of atmospheric CO2 around the last three glacial terminations, Science, 283 (1999) 1712.

    Article  ADS  Google Scholar 

  69. E. Monnin, E.J. Steig, U. Siegenthaler, et al., Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores, Earth Planet. Sci. Lett., 224 (2004) 45.

    Article  ADS  Google Scholar 

  70. A. Townsend and R.W. Howarth, Fixing the global nitrogen problem, Sci. Am., 302 (2010) 50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Carpinteri.

Additional information

Original Text © A. Carpinteri, A. Manuello, 2012, published in Fiz. Mezomekh., 2012, Vol. 15, No. 2, pp. 51–60.

An erratum to this article is available at http://dx.doi.org/10.1134/S1029959917040142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A., Manuello, A. An indirect evidence of piezonuclear fission reactions: Geomechanical and geochemical evolution in the Earth’s crust. Phys Mesomech 15, 37–46 (2012). https://doi.org/10.1134/S1029959912010043

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959912010043

Keywords

Navigation