Skip to main content
Log in

Simulation and optimization of dynamic characteristics of piezoelectric smart structures

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper deals with optimization of dynamic characteristics of smart structures based on piezoelectric materials with external electric circuits comprising resistance, capacitance and inductance. The dynamic parameters to be optimized are resonance frequencies and damping properties. For numerical estimation of the dynamic characteristics of the model system, a natural vibration problem of an electroviscoelastic solid with differing external electric circuits is proposed. Model examples are given to demonstrate the efficiency of the natural vibration problem in finding dynamically optimum piezoelectric smart structures with external electric circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. New Materials for Next-Generation Commercial Transports, Report Committee on New Materials for Advanced Civil Aircraft, Commission on Engineering and Technical Systems, National Research Council, USA, 1996.

  2. Concise Encyclopedia of Composite Materials, Ed. by A. Kelly, Pergamon Press, Oxford 1994.

    Google Scholar 

  3. S.O.R. Moheimani and A.J. Fleming, Piezoelectric Transducers for Vibration Control and Damping, Springer-Verlag, Berlin, 2006.

    MATH  Google Scholar 

  4. H.A. Sodano, Macro-Fiber Composites for Sensing, Actuation and Power Generation: PhD Thesis, Blacksburg, Virginia, 2003.

  5. F.A.C. Viana and V. Steffen, Jr., Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits, J. Braz. Soc. Mech. Sei. Eng., XXVIII, No. 3 (2006) 293.

    Article  Google Scholar 

  6. Z.-G. Song and F.-M. Li, Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs, Smart Mater. Struct, No. 20 (2011) 1.

  7. G.S. Agnes and S. Mall, Structural integrity issues during piezoelectric vibration suppression of composite structures, Composites B, No. 30 (1999) 727.

  8. N.G. Elvin and A A. Elvin, The flutter response of a piezoelectrically damped cantilever pipe, J. Intel. Mat. Syst. Str., No. 20 (2009) 2017.

  9. D. Niederberger, Smart Damping Materials Using Shunt Control: Dr. Sei. Dissertation, Zurich, 2005.

  10. C.H. Park and D.J. Inman, Enhanced piezoelectric shunt design, Shock Vib., 10, No. 2 (2003) 127.

    Google Scholar 

  11. J. Callahan and H. Baruh, Active control of exible structures by use of segmented piezoelectric elements, J. Guid. Control. Dynam., 19, No. 4 (1996) 808.

    Article  MATH  Google Scholar 

  12. M. Sausse, E. Ruggiero, G. Park, D.J. Inman, and J.A. Main, Vibration Testing and Finite Element Analysis of Inflatable Structures: Preprint, http://www.cimss.vt.edu/pdf/Conference%20Papers/Park/C31.pdf.

  13. T.W. Nye, R.A. Manning, and K. Qassim, Performance of active vibration control technology: the ACTEX flight experiments, Smart Mater. Struct., No. 8 (1999) 767.

  14. J. Nuffer and Th. Bein, Application of Piezoelectric Materials in Transportation Industry, in Global Symposium on Innovative Solutions for the Advancement of the Transport Industry, 4–6 October 2006, San Sebastian, Spain.

  15. G. Kawiecki and S. Jesse, Rosette piezotransducers for damage detection, Smart Mater. Struct., No. 11 (2002) 196.

  16. J. Hansson, M. Takano, T. Takigami, T. Tomioka, and Ya. Suzuki, Vibration suppression of railway car body with piezoelectric elements (A study by using a scale model), ISME hit. J. C, 47, No. 2 (2004) 451.

    Google Scholar 

  17. A.J. Bronowicki, N.S. Abhyankar, and S.F Griffin, Active vibration control of large optical space structures, Smart Mater. Struct., No. 8 (1999) 740.

  18. P. Bisegna and G. Caruso, Optimization of a passive vibration control scheme acting on a bladed rotor using an homogenized model, Struct. Multidiscip. O, No. 39 (2009) 625.

  19. I. Kajiwara, T. Uchiyama, and T. Arisaka, Vibration Control of Hard Disk Drive with Smart Structure Technology for Improving Servo Performance, in Motion and Vibration Control, Ed. by H. Ulbrich and L. Ginzinger, Springer, Heidelberg (2009) 165.

    Chapter  Google Scholar 

  20. http://www.ski.ru/static/127/2_11511.html.

  21. M.J. Schulz, P.F. Pai, and D.J. Inman, Health monitoring and active control of composite structures using piezoceramic patches, Composites B, No. 30 (1999) 713.

  22. J. Kim Sung and D. Jones James, Quasi-static control of natural frequencies of composite beams using embedded piezoelectric actuators, Smart Mater. Struct., 4, No. 2 (1995) 106.

    Article  Google Scholar 

  23. J.O. Simpson, S.A. Wise, R.G. Bryant, R.J. Cano, T.S. Gates, J.A. Hinkley, R.S. Rogowski, and K.S. Whitley, Innovative Materials for Aircraft Morphing, in SPIE’s 5th Annual Int. Symp. on Smart Structures and Materials, March 1–5, 1998, San Diego, CA (1998) 1.

  24. Piezo Film Product Guide and Price List. Measurement Specialities, Inc., http://www.meas-spec.com.

  25. OAO “Nil Elpa”, http://www.elpapiezo.ru/longitudal.shtml.

  26. V.V. Kalinchuk and T.I. Belyankova, Surface Dynamics of Heterogeneous Media, Fizmatlit, Moscow, 2008 (in Russian).

    Google Scholar 

  27. Advanced Materials Technology Company, http://www.advancedcerametrics.com.

  28. B.Z. Janos and N.W. Hagood, Overview of active fiber composite technologies, MST News. Actuator Applications. Home Automation, No. 3 (1998) 25.

  29. A. Pizzochero, Residual Actuation and Stiffness Properties of Piezoelectric Composites: Theory and Experiment: M. Sei. Dissertation, 1998.

  30. Cu-Hai Nguyen and X. Kornmann, A comparison of dynamic piezoactuation of fiber-based actuators and conventional PZT patches, J. Intel. Mat. Syst. Str., 17, No. 45 (2006).

    Google Scholar 

  31. J. Bennett and G. Hayward, Design of 1–3 piezocomposite hydro-phones using finite element analysis, IEEE T. Ultrason. Ferr., No. 44 (1997) 565.

  32. O. Sigmund, S. Torquato, and I.A. Aksay, On the design of 1–3 piezocomposite using topology optimization, J. Mater. Res., No. 13 (1998) 1038.

  33. W.A. Smith and B.A. Auld, Modeling 1–3 composite piezoelectrics: thickness mode oscillations, IEEE T. Ultrason. Ferr., No. 41 (1991) 40.

  34. J.M. Lloyd, Electrical Properties of Macro-Fiber Composite Actuators and Sensors: PhD Thesis, Blacksburg, Virginia, 2004.

  35. H. Sato, Study on metal core-assisted piezoelectric complex fiber, AIST Today, 3, No. 7 (2003) 13.

  36. R.L. Forward, Electronic damping of vibrations in optical structures, J. Appl. Optics, 18, No. 5 (1979) 690.

    Article  ADS  Google Scholar 

  37. N.W. Hagood and A. von Flotow, Damping of structural vibrations with piezoelectric materials and passive electrical networks, J. Sound Vib., 146, No. 2 (1991) 243.

    Article  ADS  Google Scholar 

  38. G.A. Lesieutre, Vibration damping and control using shunted piezoelectric materials, Shock Vib. Digest., 30, No. 3 (1998) 187.

    Article  Google Scholar 

  39. G. Caruso, A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping, Smart Mater. Struct., No. 10 (2001) 1059.

  40. S.O.R. Moheimani, A.J. Fleming, and S. Behrens, On the feedback structure of wideband piezoelectric shunt damping systems, Smart Mater. Struct., No. 12 (2002) 49.

  41. S.Y. Wu, Piezoelectric Shunts with Parallel R-L Circuit for Structural Damping and Vibration Control, in Proc. SPIE Smart Structures and Materials, Passive Damping and Isolation, SPIE, V. 2720 (1996) 259.

  42. K. Washizu, Variational Methods in Elasticity and Plasticity, Pergamon Press, London, 1982.

    MATH  Google Scholar 

  43. V.Z. Parton and B.A. Kudryavtsey, Electromagnetoelasticity of piezoelectric and electroconductive bodies, Nauka, Moscow, 1988 (in Russian).

    Google Scholar 

  44. V.G. Karnaukhov and I.F. Kirichok, Electrothermal Viscoelasticity, Naukova Dumka, Kiev, 1988 (in Russian).

    Google Scholar 

  45. E.P. Kligman and V.P. Marveenko, Natural vibration problem of viscoelastic solids as applied to optimization of dissipative properties of constructions, Int. J. Vib. Control, 3, No. 1 (1997) 87.

    Article  Google Scholar 

  46. E.P. Kligman, V.P. Marveenko, and N.A. Yurlova, Dynamic characteristics of thin-walled electroelastic systems, MTT, No. 2 (2005) 179 (in Russian).

  47. V.P Marveenko, E.P. Kligman, NA. Yurlova, and MA. Yurlov, Optimization of the Dynamic Characteristics of Electroviscoelastic Systems by Means of Electric Circuits, in Advanced Dynamics and Model Based Control of Structures and Machines, Ed. by H. Irschik, M. Krommer and A.K. Belyaev, Springer-Verlag, Wien (2011) 151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii P. Matveenko.

Additional information

Original Russian Text © V.P. Matveenko, E.P. Kligman, M.A. Yurlov, N.A. Yurlova, 2012, published in Fiz. Mezomekh, 2012, Vol. 15, No. 1, pp. 75–85.

Distributed worldwide by Springer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveenko, V.P., Kligman, E.P., Yurlov, M.A. et al. Simulation and optimization of dynamic characteristics of piezoelectric smart structures. Phys Mesomech 15, 190–199 (2012). https://doi.org/10.1134/S1029959912020063

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959912020063

Keywords

Navigation