Skip to main content
Log in

Basic ideas and applications of the method of reduction of dimensionality in contact mechanics

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The method of reduction of dimensionality in contact mechanics is based on a mapping of some classes of three-dimensional contact problems onto one-dimensional contacts with elastic foundations. Recently, a rigorous mathematical proof of the method has been provided for contacts of arbitrary bodies of revolution with and without adhesion. The method of reduction of dimensionality has been further verified for randomly rough surfaces. The present paper gives an overview of the physical foundations of the method and of its applications to elastic and viscoelastic contacts with adhesion and friction. Both normal and tangential contact problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Clarendon Press, Oxford, 1986.

    Google Scholar 

  2. B.N.J. Persson, Contact mechanics for randomly rough surfaces, Surf. Sci. Rep., 61, No. 201–227 (2006).

  3. V.L. Popov, Contact Mechanics and Friction. Physical Principles and Applications, Springer-Verlag, Berlin, 2010.

    Book  MATH  Google Scholar 

  4. V.L. Popov and S.G. Psakhie, Numerical simulation methods in tri-bology, Tribol. Int., 40 (2007) 916.

    Article  Google Scholar 

  5. T. Geike and V.L. Popov, Mapping of three-dimensional contact problems into one dimension, Phys. Rev. E, 76 (2007) 036710.

    Article  ADS  Google Scholar 

  6. M. Heß, Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme mit niedrigerer räumlicher Dimension, Cuvillier-Verlag, Göttingen, 2011.

    Google Scholar 

  7. I.N. Sneddon, The relation between load and penetration in the axi-symmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., 3 (1965) 47.

    Article  MathSciNet  MATH  Google Scholar 

  8. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  9. K.L. Johnson, K. Kendall, and A.D. Roberts, Surface energy and the contact of elastic solids, Proc. Roy. Soc. Lond. A. Math., 324 (1971) 301.

    Article  ADS  Google Scholar 

  10. M. Heß, On the reduction method of dimensionality: The exact mapping of axisymmetric contact problems with and without adhesion, Phys. Mesomech., 15, No. 5–6 (2012) 264.

    Article  Google Scholar 

  11. L.D. Landau and E.M. Lifschitz, Lehrbuch der Theoretischen Physik. Band 7. Elastizitätstheorie, Akademie-Verlag, Berlin, 1965.

    Google Scholar 

  12. L.D. Landau and E.M. Lifschitz, Lehrbuch der Theoretischen Physik. Band 6: Hydrodynamik, Akademie-Verlag, Berlin, 1991.

    Google Scholar 

  13. J.R.M. Radok, Viscoelastic stress analysis, Q. Appl. Math., 15 (1957) 198.

    MathSciNet  MATH  Google Scholar 

  14. J.R. Barber, Bounds on the electrical resistance between contacting elastic rough bodies, Proc. Roy. Soc. Lond. A, 495 (2003) 53.

    MathSciNet  ADS  Google Scholar 

  15. A.A. Griffith, The phenomena of rupture and flow in solids, Philos. T. Roy. Soc. A, 221 (1921) 163.

    Article  ADS  Google Scholar 

  16. L. Prandtl, Ein Gedankenmodell für den ZerreißVorgang spröder Körper, J. Appl. Math. Mech., 13 (1933) 129.

    MATH  Google Scholar 

  17. D. Maugis, Contact, Adhesion, and Rupture of Elastic Solids, Springer-Verlag, Berlin, 2000.

    Book  MATH  Google Scholar 

  18. J.F. Archard, Elastic deformation and the laws of friction, Proc. Roy. Soc. A, 243 (1957) 190.

    Article  ADS  Google Scholar 

  19. J.A. Greenwood and J.B.P. Williamson, Contact of nominally flat surfaces, Proc. R. Soc. A, 295 (1966) 300.

    Article  ADS  Google Scholar 

  20. S. Hyun and M.O. Robbins, Elastic contact between rough surfaces: Effect of roughness at large and small wavelengths, Tribol. Int., 40 (2007) 1413.

    Article  Google Scholar 

  21. C. Campana and M.H. Müser, Practical Green’s function approach to the simulation of elastic, semi-infinite solids, Phys. Rev. B, 74 (2006) 075420.

    Article  ADS  Google Scholar 

  22. S. Akarapu, T. Sharp, and M.O. Robbins, Stiffness of contacts between rough surfaces, Phys. Rev. Lett., 106 (2011) 204301.

    Article  ADS  Google Scholar 

  23. C. Campana, B.N.J. Persson, and M.H. Müser, Transverse and normal interfacial stiffness of solids with randomly rough surfaces, J. Phys. Condens. Matt., 23 (2011) 085001.

    Article  ADS  Google Scholar 

  24. R. Pohrt and V.L. Popov, Normal contact stiffness of elastic solids with fractal rough surfaces, Phys. Rev. Lett., 108 (2012) 104301.

    Article  ADS  Google Scholar 

  25. R. Pohrt and V.L. Popov, Investigation of the dry normal contact between fractal rough surfaces using the reduction method, comparison to 3D simulation, Phys. Mesomech., 15, No. 5–6 (2012) 275.

    Article  Google Scholar 

  26. K. A. Grosch, The relation between the friction and viscoelastic properties of rubber, Proc. Roy. Soc. Lond. A. Mat., 274 (1963) 21.

    Article  ADS  Google Scholar 

  27. V.L. Popov and A.E. Filippov, Force of friction between fractal rough surface and elastomer, Tech. Phys. Lett., 36 (2010) 525.

    Article  ADS  Google Scholar 

  28. V.L. Popov and A.V. Dimaki, Using hierarchical memory to calculate friction force between fractal rough solid surface and elastomer with arbitrary linear rheological properties, Tech. Phys. Lett., 37 (2011) 8.

    Article  ADS  Google Scholar 

  29. A.E. Filippov and V.L. Popov, Fractal Tomlinson model for mesosco-pic friction: From microscopic velocity-dependent damping to macroscopic Coulomb friction, Phys. Rev. E, 75 (2007) 027103.

    Article  ADS  Google Scholar 

  30. L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper, J. Appl. Math. Mech., 8 (1928) 85.

    MATH  Google Scholar 

  31. V.L. Popov, A theory of the transition from static to kinetic friction in boundary lubrication layers, Solid State Commun., 115 (2000) 369.

    Article  ADS  Google Scholar 

  32. E. Meyer, R.M. Overney, K. Dransfeld, and T. Gyalog, Nanoscience: Friction and Rheology on the Nanometer Scale, World Scientific, Singapore, 1998.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin L. Popov.

Additional information

Original Text © V.L. Popov, 2012, published in Fiz. Mezomekh., 2012, Vol. 15, No. 4, pp. 9–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.L. Basic ideas and applications of the method of reduction of dimensionality in contact mechanics. Phys Mesomech 15, 254–263 (2012). https://doi.org/10.1134/S1029959912030022

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959912030022

Keywords

Navigation