Skip to main content
Log in

Dynamic tangential contact of rough surfaces in stick-slip microdrives: Modeling and validation using the method of dimensionality Reduction

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The dynamic tangential contact of rough surfaces of frictional elements of a stick-slip microdrive is theoretically investigated. By applying the method of dimensionality reduction, the contact areas of the frictional partners are modeled such that the physical properties of the contact can be fully considered and the influence of the roughness is taken into account. The dynamics of the microscopic rough contact is combined with a macroscopic movement of the drive’s runner in a hybrid dynamic simulation. The numerical results show a good agreement with experimental data. Furthermore, an analytical relation between maximal tangential contact displacement and normal force applied to the contact is analyzed, allowing the contact behavior to be theoretically predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pohl, D.W., Dynamic Piezoelectric Translation Devices, Rev. Sci. Ins., 1987, vol. 58(1), pp. 54–57.

    Article  ADS  MathSciNet  Google Scholar 

  2. Zhang, Z.M., An, Q., Li, J.W., and Zhang, W.J., Piezoelectric Friction-Inertia Actuator—a Critical Review and Future Perspective, Int. J. Adv. Manu. Tech., 2012, vol. 62(5–8), pp. 669–685.

    Article  Google Scholar 

  3. Nguyen, H.X., Edeler, C., and Fatikow, S., Modeling of Piezo-Actuated Stick-Slip Micro-drives: An Overview, Adv. Sci. Tech.: Proc. 4th Int. Conf. Smart Mater., Struct. Syst., 2012, vol. 81, pp. 39–48.

    Article  Google Scholar 

  4. Dahl, P.R., A Solid Friction Model, Aerosp. Coop. El Segundo CA, 1968, no. ADA041920.

    Google Scholar 

  5. de Wit, C., Olsson, H., Astrom, K., and Lischinsky, P., A New Model for Control of Systems with Friction, IEEE Trans. Autom. Contr., 1995, vol. 40, pp. 419–425.

    Article  MATH  Google Scholar 

  6. Breguet, J.-M., Stick and Slip Actuators, PhD Dissertation, Zurich: Swiss Federal Institute of Technology ETH Zurich, 1998.

    Google Scholar 

  7. Dupont, P., Hayward, V., Armstrong, B., and Altpeter, F., Single State Elastoplastic Friction Models, IEEE Trans. Auto. Contr., 2002, vol. 47, pp. 787–792.

    Article  MathSciNet  Google Scholar 

  8. Peng, J.Y. and Chen, D.B., Modeling of Piezoelectric-Driven Stick-Slip Actuators, IEEE/ASME Trans. Mechatron, 2010, vol. 99, pp. 1–6.

    Google Scholar 

  9. Edeler, C., Modellierung und Validierung der Krafterzeugung mit Stick-Slip-Antrieben für nanorobotische Anwendungen, PhD Dissertation, Oldenburg: Carl von Universität Oldenburg, 2011.

    Google Scholar 

  10. Nguyen, H.X., Teidelt, E., Popov, V.L., and Fatikow, S., Modeling and Waveform Optimization of Stick-Slip Microdrives by the Method of Dimensionality Reduction, Submitted for publication in J. Arch. App. Mech.

  11. Popov, V.L. and Psakhie, S.G., Numerical Simulation Methods in Tribology, Tribol. Int., 2007, vol. 40, pp. 916–923.

    Article  Google Scholar 

  12. Geike, T. and Popov, V.L., Mapping of Three-Dimensional Contact Problems into One Dimension, Phys. Rev., 2007, vol. 76, p. 036710.

    ADS  Google Scholar 

  13. Geike, T. and Popov, V.L., Reduction of Three-Dimensional Contact Problems to One-Dimensional Ones, Tribol. Int., 2007, vol. 40, pp. 924–929.

    Article  Google Scholar 

  14. Heß, M., Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme mit niedrigerer raumlicher Dimension, PhD Dissertation, Göttingen: Cuvillier-Verlag, Technische Universität Berlin, 2011.

    Google Scholar 

  15. Popov, V.L., Basic Ideas and Applications of the Method of Reduction of Dimensionality in Contact Mechanics, Phys. Mesomech., 2012, vol. 15, no. 5–6, pp. 254–263.

    Article  Google Scholar 

  16. Popov, V.L., Method of Reduction of Dimensionality in Contact and Friction Mechanics: A Linkage between Micro and Macro Scales, Friction, 2013, vol. 1(1), pp. 41–62.

    Article  Google Scholar 

  17. Pohrt, R., Popov, V.L., and Filippov, A.E., Normal Contact Stiffness of Elastic Solids with Fractal Rough Surfaces, Phys. Rev. Lett., 2012, vol. 108, p. 104301.

    Article  ADS  Google Scholar 

  18. Pohrt, R. and Popov, V.L., Normal Contact Stiffness of Elastic Solids with Fractal Rough Surfaces for One- and Three-Dimensional Systems, Phys. Rev. E, 2012, vol. 86, p. 026710.

    Article  ADS  Google Scholar 

  19. Pohrt, R. and Popov, V.L., Contact Mechanics of Rough Spheres: Crossover from Fractal to Hertzian Behavior, Adv. Tribol., 2013, p. 974178.

    Google Scholar 

  20. Popov, V.L. and Heß, M., Methode der Dimensionsreduktion in Kontaktmechanik und Reibung Eine Berechnungsmethode im Mikro- und Makrobereich, Berlin: Springer, 2013.

    Book  Google Scholar 

  21. Grzemba, B., Pohrt, R., Teidelt, E., and Popov, V.L., Maximum Micro-Slip in Tangential Contact of Randomly Rough Self-Affine Surfaces, Wear, 2014, vol. 309, no. 1–2, pp. 256–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. X. Nguyen.

Additional information

Original Text © H.X. Nguyen, E. Teidelt, V.L. Popov, S. Fatikow, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 3, pp. 77–83.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.X., Teidelt, E., Popov, V.L. et al. Dynamic tangential contact of rough surfaces in stick-slip microdrives: Modeling and validation using the method of dimensionality Reduction. Phys Mesomech 17, 304–310 (2014). https://doi.org/10.1134/S1029959914040079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959914040079

Keywords

Navigation