Skip to main content
Log in

Effect of Ultrasonic Impact Treatment on Structural Phase Transformations in Ti-6Al-4V Titanium Alloy

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Ultrasonically treated Ti-6Al-4V alloy samples were examined by X-ray diffraction analysis and transmission electron microscopy, which revealed the formation of a 1-μm-thick layer with the nanocrystalline structure of titanium oxides TiO2 (brookite and srilankite) and α phase on their surface. Beneath the oxide layer there is a nanocrystalline structure of the α + β phases. At a depth of 2 to 40 μm from the surface, the grain structure changes from nanocrystalline to microcrystalline. At a depth of 75 μm, the grain size is equal to that of the initial untreated alloy. The surface layers of the titanium alloy experience macroscopic elastic compressive stresses of 0.8 GPa. Their generation is accompanied by microdeformation of the α-phase lattice. The change in the parameters of the α-Ti solid solution after ultrasonic treatment indicates an increase in the concentration of vanadium and oxygen in the solid solution. Ultrasonic treatment causes the local β → α″ martensitic transformation in the β phase of grain-boundary layers, due to which these layers become two-phase (β + α″). The use of a carbon lubricant during ultrasonic treatment leads to a decrease in the volume fraction of titanium oxides in the surface layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Chan, H.L., Ruan, H.H., Chen, A.Y., and Lu, J., Optimization of the Strain Rate to Achive Exceptional Mechanical Properties of 304 Stainless Steel Using High Speed Ultrasonic Surface Mechanical Attrition Treatment, Acta Mater., 2010, vol. 58, pp. 5086–5096. https://doi.org/10.1016/j.actamat.2010.05044

    Article  ADS  Google Scholar 

  2. Yasuoka, M., Wang, P., Zhang, K., Qiu, Z., Kusaka, K., Pyoun, Y.-S., and Murakami, R.I., Improvement of the Fatigue Strength of SUS304 Austenite Stainless Steel Using Ultrasonic Nanocrystal Surface Modification, Surf. Coat. Technol., 2013, vol. 218, pp. 93–98. https://doi.org/10.1016/j.surfcoat.2012.12.033

    Article  Google Scholar 

  3. Wu, B., Zhang, J., Zhang, L., Pyoun, Y.-S., and Murakami, R.-I., Effect of Ultrasonic Nanocrystal Surface Modification on Surface and Fatigue Properties of Quenching and Tempering S45C Steel, Appl. Surf. Sci., 2014, vol. 321, pp. 318–330. https://doi.org/10.1016/j.apsusc.2014.09.068

    Article  ADS  Google Scholar 

  4. Panin, V.E., Klimenov, V.A., Perevalova, O.B., Bezborodov, V.P., Podkovka, V.P., Kolomeets, N.P., Gorodishchenskii, P.A., and Kozlov, E.V., Substructural and Phase Transformations during Ultrasonic Treatment of Martensitic Steel, Fiz. Khim. Obr. Mat., 1993, no. 6, pp. 77–83.

    Google Scholar 

  5. Amanov, A., Pyun, Y.-S., and Sasaki, S., Effects of Ultrasonic Nanocrystalline Surface Modification (UNSM) Technique on the Tribological Behavior of Sintered Cu-Based Alloy, Tribology Int., 2014, vol. 72, pp. 187–197. https://doi.org/10.1016/j.triboint.2013.12.03

    Article  Google Scholar 

  6. Liao, M., Chen, W.R., and Bellinger, N.C., Effects of Ultrasonic Impact Treatment of Fatigue Behavior of Naturally Exfoliated Aluminum Alloys, Int. J. Fatigue, 2008, vol. 30, pp. 717–726. https://doi.org/10.1016/j.ijfatigue.2007.05.002

    Article  Google Scholar 

  7. Zhu, K.Y., Vassel, A., Brisset, F., Lu, K., and Lu, J., Nanostructure Formation Mechanism of α-Titanium Using SMAT, Acta Mater., 2004, vol. 52, pp. 4101–4110. https://doi.org/10.1016/j.actamat.2004.05.023

    Article  ADS  Google Scholar 

  8. Wen, M., Liu, G., Gu, J.-F., Guan, W.-M., and Lu, J., Dislocation Evolution in Titanium during Surface Severe Plastic Deformation, Appl. Surf. Sci., 2009, vol. 255, pp. 6097–6102. https://doi.org/10.1016/j.apsusc.2009.01.048

    Article  ADS  Google Scholar 

  9. Panin, A.V., Kazachenok, M.S., Kozelskaya, A.I., Balokhonov, R.R., Romanova, V.A., Perevalova, O.B., and Pochivalov, Yu.I., The Effect of Ultrasonic Impact Treatment on the Deformation Behavior of Commercially Pure Titanium under Uniaxial Tension, Mater. Design, 2017, vol. 117, pp. 371–381. https://doi.org/10.1016/j.matdes.2017.01.006

    Article  Google Scholar 

  10. Pol’shin, E.V., Vasiliev, M.A., Voloshko, S.M., and Yatsenko, L.F., Mössbauer Spectroscopy of the Surface Layer of Titanium Alloy VT6 Modified by Ultrasonic Impact Deformation, Metallofiz. Noveish. Tekh., 2014, vol. 36, no. 3, pp. 343–355.

    Article  Google Scholar 

  11. Zhang, C., Song, W., Li, F., Zhao, X., Wang, Y., and Xiao, G., Microstructure and Corrosion Properties of Ti-6Al-4V Alloy by Ultrasonic Shot Peening, Int. J. Electrochem. Sci., 2015, vol. 10, pp. 9167–9178.

    Google Scholar 

  12. Vasylyev, M.A., Chenakin, S.P., and Yatsenko, L.F., Ultrasonic Impact Treatment Induced Oxidation of Ti6Al4V Alloy, Acta Mater., 2016, vol. 103, pp. 761–774. https://doi.org/10.1016/j.actamat.2015.10.041

    Article  ADS  Google Scholar 

  13. Li, G., Qu, S.G., Pan, Y.X., and Li, X.Q., Effects of the Different Frequencies and Loads of Ultrasonic Surface Rolling on Surface Mechanical Properties and Fretting Wear Resistance of HIP Ti-6Al-4V Alloy, Appl. Surf. Sci., 2016, vol. 389, pp. 324–334. https://doi.org/10.1016/j.apsusc.2016.07.120

    Article  ADS  Google Scholar 

  14. Liu, J., Suslov, S., Vellor, A., Ren, Z., Amanov, A., Pyun, Y.-S., Martini, A., Dong, Y., and Ye, C., Surface Nanocrystallization by Ultrasonic Nanocrystal Surface Modification and Its Effect on Gas Nitriding of Ti6Al4V Alloy, Mater. Sci. Eng. A, 2018, vol. 736, pp. 335–343. https://doi.org/10.1016/j.m

    Article  Google Scholar 

  15. Panin, V.E., Surikova, N.S., Lider, A.M., Bordulev, Yu.S., Ovechkin, B.B., Khayrullin, R.R., and Vlasov, I.V., Multiscale Mechanism of Fatigue Fracture of Ti–6Al–4VTitanium Alloy within the Mesomechanical Space–Time–Energy Approach, Phys. Mesomech., 2018, vol. 21, no. 5, pp. 452–463. https://doi.org/10.1134/S1029959918050090

    Article  Google Scholar 

  16. Panin, V.E., Panin, S.V., Pochivalov, Yu.I., Smirnova, A.S., and Eremin, A.V., Structural Scale Levels of Plastic Deformation and Fracture of High-Strength Titanium Alloy Welds, Phys. Mesomech., 2018, vol. 21, no. 5, pp. 464–474. https://doi.org/10.1134/S1029959918050107

    Article  Google Scholar 

  17. Li, F.-Q., Zhao, J., Mo, J.-H., Li, J.-J., and Huang, L., Comparative Study of the Microstructure of Ti-6Al-4V Titanium Alloy Sheets under Quasi-Static and High-Velocity Bulging, J. Mech. Sci. Technol., 2017, vol. 31(3), pp. 1349–1356. https://doi.org/10.1007/s12206-016-0843-9

    Article  Google Scholar 

  18. Motyka, M., Baran-SAED leja, A., Sieniawski, J., Wierzbinska, M., and Gancarczyk, K., Decomposition of Deformed α′(α″) Martensitic Phase in Ti-6Al-4V Alloy, Mater. Sci. Technol., 2019, vol. 35, no. 3, pp. 260–272. https://doi.org/10.1080/02670836.2018.1466418

    Article  Google Scholar 

  19. Mantani, Y., Takemoto, Y., Hida, M., Sakakibara, A., and Tajima, M., Phase Transformation of α″ Martensite Structure by Aging in Ti–8 mass % Mo Alloy, Mater. Trans., 2004, vol. 45, no. 5, pp. 1629–1634. https://doi.org/10.2320/matertrans.45.1629

    Article  Google Scholar 

  20. Mantani, Y. and Tajima, M., Phase Transformation of Quenched α″ Martensite by Aging in Ti-Nb Alloys, Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 315–319. https://doi.org/10.1016/j.msea.2006.02.180

    Article  Google Scholar 

  21. Duerig, T.W., Albrecht, J., Richter, D., and Fischer, P., Formation and Reversion of Stress Induced Martensite in Ti-10V-2Fe-3Al, Acta Metallurg., 1982, vol. 30, pp. 2161–2172. https://doi.org/10.1016/0001-6160(82)90137-7

    Article  Google Scholar 

  22. Kolli, R.P., Joost, W.J., Ankem, S., Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys, JOM, 2015, vol. 67, no. 6, pp. 1273–1280. https://doi.org/10.1007/s11837-015-1411-y

    Article  Google Scholar 

  23. Gao, J., Huang, Y., Guan, D., Knowles, A.J., Ma, L., Dye, D., and Rainforth, W.M., Deformation Mechanisms in a Metastable Beta Titanium Twinning Induced Plasticity alloy with High Yield Strength and High Strain Hardening Rate, Acta Mater., 2018, vol. 152, pp. 301–314. https://doi.org/10.1016/j.actamat.2018.04.035

    Article  ADS  Google Scholar 

  24. Samiee, A., Casillas, G., Ahmed, M., Savvakin, D.G., Naseri, R., and Pereloma, E., Formation of Deformation Induced Products in a Metastable β Titanium Alloy during High Temperature Compression, Metals, 2018, vol. 8, p. 100. https://doi.org/10.3390/met8020100

    Article  Google Scholar 

  25. Kazantseva, N., Krakhmalev, P., Thuvander, M., Yadroitsev, I., Vinogradova, N., and Ezhov, I., Martensitic Transformations in Ti-6Al-4V (ELI) Alloy Manufactured by 3D Printing, Mater. Charact., 2018, vol. 146, pp. 101–112. https://doi.org/10.1016/j.matchar.2018.09.042

    Article  Google Scholar 

  26. Gorelik, S.S., Rastorguev, L.N., and Skakov, Yu.A., X-Ray and Electron Optical Analysis, Moscow: Metallurgiya, 1970.

  27. Kudryavtsev, E.A., Zherebtsov, S.V., Kostyuchenko, S.A., and Salishchev, G.A., Microstructural Evolution and Mechanical Behavior of Alloy VT6 under Multi-Axial Isothermal Deformation at 550 and 800°C, Nauch. Ved. Mat. Fiz., 2011, no. 23(118), pp. 208–214.

    Google Scholar 

  28. Illarionov, A.G., Nezhdanov, A.G., Stepanov, S.I., Popov, A.A., and Muller-Kamskii, G., Structure, Phase Composition, and Mechanical Properties of Biocompatible Titanium Alloys of Different Types, PMM, 2020, vol. 121, no. 4, pp. 367–373.

    ADS  Google Scholar 

  29. Utevskii, L.M., Electron Diffraction Microscopy in Metallurgy, Moscow: Metallurgiya, 1973.

  30. Koneva, N.A. and Kozlov, E.V., Physical Nature of Stages of Plastic Deformation, in Structural Levels of Plastic Deformation and Fracture, Novosibirsk: Nauka, 1990, pp. 123–186.

  31. Kiseleva, S.F., Popova, N.A., Koneva, N.A., and Kozlov, E.V., Distribution of Internal Stresses and Stored Energy Density in a Grain of a Deformed Polycrystal, Pis’ma Mater., 2012, vol. 2, no. 2, pp. 84–89.

    Google Scholar 

  32. Liu, J., Suslov, S., Li, S., Qin, H., Ren, Z., Ma, C., Wang, G.-X., Doll, G.L., Cong, H., Dong, Y., and Ye, C., Effects of Ultrasonic Nanocrystal Surface Modification on the Thermal Oxidation Behavior of Ti6Al4V, Surf. Coat. Technol., 2017, vol. 325, pp. 289–298.

    Article  Google Scholar 

  33. Ao, Ni, Liu, D., Liu, C., Zhang, X., and Liu, D., Face-Centered Titanium Induced by Ultrasonic Surface Rolling Process in Ti-6Al-4V Alloy and Its Tensile Behavior, Mater. Character., 2018, vol. 145, pp. 527–533. https://doi.org/10.1016/j.matchar.2018.09.004

    Article  Google Scholar 

  34. Dekhtyar, A.I., Mordyuk, B.N., Savvakin, D.G., Bondarchuk, V.I., Moiseeva, I.V., and Khripta, N.I., Enhanced Fatigue Behavior of Powder Metallurgy Ti-6Al-4V Alloy by Applying Ultrasonic Impact Treatment, Mater. Sci. Eng. A, 2015, vol. 641, pp. 348–359. https://doi.org/10.1016/j.msea.2015.06.072

    Article  Google Scholar 

  35. Liu, C., Liu, D., Zhang, X., Ao, N., Xu, X., Liu, D., and Yang, J., Fretting Fatigue Characteristics of Ti-6Al-4V Alloy with a Gradient Nanostructured Surface Layer Induced by Ultrasonic Surface Rolling Process, Int. J. Fatigue, 2019, vol. 125, pp. 249–260. https://doi.org/10.1016/j.ijfatigue.2019.03.042

    Article  Google Scholar 

  36. Liu, C., Liu, D., Zhang, X., Yu, S., and Zhao, W., Effect of the Ultrasonic Surface Rolling Process on the Fretting Fatigue Behavior of Ti-6Al-4V Alloy, Materials, 2017, vol. 10, p. 833. https://doi.org/10.3390/ma10070833

    Article  ADS  Google Scholar 

  37. Bondar, A.A., Velikanova, T.Ya., Danilenko, V.M., Dementiev, V.M., Kozlov, E.V., Lukashenko, G.M., Sidorko, V.R., and Stern, D.M., Phase Stability and Phase Equilibrium in Transition Metal Alloys, Kiev: Naukova Dumka, 1991.

  38. Pryadko, T.V., Specific Features of Hydrogenation of Alloys of the Ti-V System, Metallofiz. Noveish. Tekh., 2015, vol. 37, no. 2, pp. 243–255.

    Article  Google Scholar 

  39. Mishra, R.S., Stolyarov, V.V., Echer, C., Valiev, R.Z., and Mukherjee, A.K., Mechanical Behavior and Superplasticity of a Severe Plastic Deformation Processed Nanocrystalline Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2001, vol. 298, pp. 44–50. https://doi.org/10.1016/50921-5093(00)01338-1

    Article  Google Scholar 

  40. Zeng, L. and Bieler, T.R., Effects of Working, Heat Treatment, and Aging on Microstructural Evolution and Crystallographic Texture of α, α′, α″ and β Phases in Ti–6Al–4V Wire, Mater. Sci. Eng. A, 2005, vol. 392, pp. 403–414. https://doi.org/10.1016/j.msea.2004.09.072

    Article  Google Scholar 

  41. Akanuma, T., Metsumoto, H., Sato, S., Chibo, A., Inagaki, I., Shirai, Y., and Maeda, T., Enhancement of Athermal α″ Martensitic Transformation in Ti-10V-2Fe-3Al Alloy due to High-Speed Hot Deformation, Scripta Mater., 2012, vol. 67, pp. 21–24. https://doi.org/10.1016/j.scriptamat.2012.03.011

    Article  Google Scholar 

  42. Perevalova, O.B., Panin, A.V., and Sinyakova, E.A., Changes in the Phase Composition and Lattice Parameters of the Solid Solution Based on α-Ti in the Surface Layers of the Ti-6Al-4V Alloy Subjected to Electron-Beam Treatment, FMM, 2020, vol. 121, no. 2, pp. 143–149.

    Google Scholar 

  43. Perevalova, O.B. and Panin, A.V., Phase Transformation α-Ti → α″-Martensite during Hydrogen Charging of Commercial Titanium Pretreated with an Electron Beam, Fiz. Khim. Obr. Mat., 2017, no. 6, pp. 50–62.

    Google Scholar 

  44. Ao, Ni, Liu, D., Zhang, X., Liu, C., Yang, J., and Liu, D., Surface Nanocrystallization of Body-Centered Cubic Beta Phase in Ti-6Al-4V Alloy Subjected to Ultrasonic Surface Rolling Process, Surf. Coat. Technol., 2019, vol. 361, pp. 35–41. https://doi.org/10.1016/j.surfcoat.2019.01.045

    Article  Google Scholar 

Download references

Funding

The work was carried out within the Government Statement of Work of the ISPMS SB RAS, subject number FWRW-2021-0010. The studies were carried out using the equipment of the Nanotech CUC of the ISPMS SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Perevalova.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 1, pp. 67–78.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevalova, O.B., Panin, A.V., Kazachenok, M.S. et al. Effect of Ultrasonic Impact Treatment on Structural Phase Transformations in Ti-6Al-4V Titanium Alloy. Phys Mesomech 25, 248–258 (2022). https://doi.org/10.1134/S1029959922030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922030055

Keywords:

Navigation