Skip to main content
Log in

Umbral calculus associated with Frobenius-type Eulerian polynomials

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study some properties of several polynomials arising from umbral calculus. In particular, we investigate the properties of orthogonality type of the Frobeniustype Eulerian polynomials which are derived from umbral calculus. By using our properties, we can derive many interesting identities of special polynomials associated with Frobeniustype Eulerian polynomials. An application to normal ordering is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.C. Biedenharn, R.A. Gustafson, M.A. Lohe, J.D. Louck, and S.C. Milne, “Special Functions and Group Theory in Theoretical Physics. In Special Functions: Group Theoretical Aspects and Applications,” Math. Appl. (Reidel, Dordrecht, 1984), pp. 129–162.

    Google Scholar 

  2. L.C. Biedenharn, R.A. Gustafson, and S.C. Milne, “An Umbral Calculus for Polynomials Characterizing U(n) Tensor Products,” Adv. Math. 51, 36–90 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Blasiak, “Combinatorics of Boson Normal Ordering and Some Applications,” Concepts of Phyiscs 1, 177–278 (2004).

    Google Scholar 

  4. P. Blasiak, G. Dattoli, A. Horzela, and K.A. Penson, “Representations of Monomiality Principle with Sheffer-Type Polynomials and Boson Normal Ordering,” Phys. Lett. A 352, 7–12 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. M. Can, M. Cenkci, V. Kurt, and Y. Simsek, “Twisted Dedekind Type Sums Associated with Barnes’ Type Multiple Frobenius-Euler l-Functions,” Adv. Stud. Contemp. Math. (Kyungshang) 18(2), 135–160 (2009).

    MATH  MathSciNet  Google Scholar 

  6. I.N. Cangul, and Y. Simsek, “A Note on Interpolation Functions of the Frobenious-Euler Numbers, Application of Mathematics in Technical and Natural Sciences,” AIP Conf. Proc., 1301 (Amer. Inst. Phys., Melville, NY, 2010), pp. 59–67.

    Google Scholar 

  7. L. Carlitz, “Eulerian Numbers and Polynomials of Higher Order,” Duke Math. J. 27, 401–423 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Carlitz, “Eulerian Numbers and Polynomials,” Math. Mag. 32, 247–260 (1958/1959).

    Article  MathSciNet  Google Scholar 

  9. Ch. Charalambides, “On a Generalized Eulerian Distribution,” Ann. Inst. Statist. Math. 43, 197–206 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  10. Ch. Charalambides, and M. Koutras, “On a Generalization of Morisita’s Model for Estimating the Habitat Preferencem,” Ann. Inst. Statist. Math. 46, 201–210 (1993).

    Article  MathSciNet  Google Scholar 

  11. P.S. Dwyer, “The Computation of Moments with the Use of Cumulative Totals,” Ann. Math Stat 9, 288–304 (1938).

    Article  Google Scholar 

  12. P.S. Dwyer, “The Cumulative Numbers and Their Polynomials,” Ann. Math. Stat. 11, 66–71 (1940).

    Article  MathSciNet  Google Scholar 

  13. D. Foata, “Eulerian Polynomials: from Euler’s Time to the Present,” The legacy of Alladi Ramakrishnan in the mathematical sciences (Springer, New York, 2010), pp. 253–273.

    Chapter  Google Scholar 

  14. J. Haglund, and M. Visontai, “Stable Multivariate Eulerian Polynomials and Generalized Stirling Permutations,” Eur. J. Combin. 33(4), 447–487 (2012).

    Article  MathSciNet  Google Scholar 

  15. T.-X. He, “Eulerian Polynomials and B-Splines,” J. Comput. Appl. Math. 236(15), 3763–3773 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  16. K.G. Janardan, “Relationship between Morisita’s Model for Estimating the Environmental Density and the Generalized Eulerian Numbers,” Ann. Inst. Statist. Math. 40, 43–50 (1988).

    Article  MathSciNet  Google Scholar 

  17. J. Katriel, “Combinatorial Aspects of Boson Algebra,” Lett. Nuovo Cimento 10, 565–567 (1974).

    Article  Google Scholar 

  18. J. Katriel, and M. Kibler, “Normal Ordering for Deformed Boson Operators and Operator-Valued Deformed Stirling Numbers,” J. Phys. A: Math. Gen. 25, 2683–2691 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. D.S. Kim, T. Kim, and S.-H. Rim, “Frobenius-Type Eulerian Polynomials,” Proc. Jangjeon Math. Soc. 16(2), 156–163 (2013).

    Google Scholar 

  20. D.S. Kim, T. Kim, Y.H. Kim, and D.V. Dolgy, “A Note on Eulerian Polynomials, Associated with Bernoulli and Euler Numbers and Polynomials,” Adv. Stud. Contemp. Math. 22(3), 379–389 (2012).

    MATH  MathSciNet  Google Scholar 

  21. D.S. Kim, T. Kim, S.-H. Lee, and S.-H. Rim, “Frobenius-Euler Polynomials and Umbral Calculus in the p-Adic Case,” Adv. Difference Equ. 2012, 222 (2012).

    Article  Google Scholar 

  22. D.S. Kim, T. Kim, T. Mansour, S.-H. Rim, and M. Schork, “Umbral Calculus and Sheffer Sequences of Polynomials,” J. Math. Physics 54, 083504 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  23. T. Kim, “An Identity of the Symmetry for the Frobenius-Euler Polynomials Associated with the Fermionic p-Adic Invariant q-Integrals on ℤp,” Rocky Mountain J. Math. 41(1), 239–247 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Kim, “Symmetry p-Adic Invariant Itegral on ℤp for Bernoulli and Euler Polynomials,” J. Difference Equ. Appl. 14(12), 1267–1277 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  25. S. M. Ma, “A Summation Formula Related to q-Eulerian Polynomails,” Ars Combin. 94, 299–301 (2010).

    MATH  MathSciNet  Google Scholar 

  26. T. Mansour, M. Schork, and S. Severini, “Wick’s Theorem for q-Deformed Boson Operators,” J. Phys. A 40, 8393–8401 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. T. Mansour, M. Schork, and S. Severini, “A Generalization of the Boson Normal Ordering,” Phys. Lett. A 364, 214–220 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. T. Mansour, and M. Schork, “On the Normal Ordering of Multi-Mode Boson Operators,” Russ. J. Math. Phys. 15, 51–60 (2008).

    Article  MathSciNet  Google Scholar 

  29. V. P. Maslov, Operational Methods [in Russian] (Nauka, Moscow, 1973); V. P. Maslov, Operational Methods (Mir, Moscow, 1976).

    Google Scholar 

  30. S. Roman, “More on the Umbral Calculus, with Emphasis on the q-Umbral Calculus,” J. Math. Anal. Appl. 107, 222–254 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Roman, The Umbral Calculus (Dover Publ. Inc. New York, 2005).

    Google Scholar 

  32. M. Schork, “On the Combinatorics of Normal Ordering Bosonic Operators and Deformations of It,” J. Phys. A: Math. Gen. 36, 4651–4665 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. M. Schork, “Generalized Heisenberg Algebras and K-Generalized Fibonacci Numbers,” J. Phys. A 40(15), 4207–4214 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. M. Schork, “Normal Ordering q-Bosons and Combinatorics,” Phys. Lett. A 355(4–5), 293–297 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. B.G. Wilson, and F.G. Rogers, “Umbral Calculus and the Theory of Multispecies Nonideal Gases,” Phys. A 139, 359–386 (1986).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Mansour, T. Umbral calculus associated with Frobenius-type Eulerian polynomials. Russ. J. Math. Phys. 21, 484–493 (2014). https://doi.org/10.1134/S1061920814040062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920814040062

Keywords

Navigation