Skip to main content
Log in

Dispersion of magnetic susceptibility and the microstructure of magnetic fluid

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The microstructure of magnetic fluid produced on the basis of kerosene with oleic acid as a stabilizer is studied experimentally. An analytical procedure based on the known dependence of the time of Brownian relaxation of the magnetic moment of the colloidal particle on its size and the expansion of a low-frequency spectrum of dynamic susceptibility into the series of Debye functions is used. Magnetic susceptibility is measured at frequencies from 10 Hz to 100 kHz and temperatures from 225 to 360 K for colloidal solutions with the volume fraction of magnetite from 0.08 to 0.17. The clusters with uncompensated magnetic moments and sizes varying from 50 to 70 nm that are three-or fourfold larger than the mean diameter of a single colloidal particle are found. It is revealed that characteristic sizes of clusters are virtually independent of temperature and concentration of colloidal particles. The contribution of clusters to the equilibrium susceptibility of magnetic fluid grows exponentially with decreasing temperature, being manyfold larger at low temperatures than that of single particles. The obtained temperature dependence of equilibrium susceptibility is compared with that predicted from current theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bibik, E.E., in Fizicheskie svoistva magnitnykh zhidkostei (Physical Properties of Magnetic Liquids), Sverdlovsk: UNTs AN SSSR, 1983, p. 3.

    Google Scholar 

  2. Rosensweig, R.E., Ferrohydrodynamics, Cambridge: Camdridge Univ. Press, 1985.

    Google Scholar 

  3. Bibik, E.E., Zh. Prikl. Khim. (Leningrad), 1970, vol. 43, p. 587.

    CAS  Google Scholar 

  4. Pshenichnikov, A.F., Mekhonoshin, V.V., and Lebedev, A.V., J. Magn. Magn. Mater., 1996, vol. 161, p. 94.

    Article  CAS  Google Scholar 

  5. Buzmakov, V.M. and Pshenichnikov, A.F., J. Colloid Interface Sci., 1996, vol. 182, p. 63.

    Article  Google Scholar 

  6. Gazeau, F., Baravian, C., Bacri, J.-C., Perzynski, R., and Shliomis, M.I., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1997, vol. 56, p. 614.

    CAS  Google Scholar 

  7. Rasa, M., Bica, D., Phillipse, A., and Vekas, L., Eur. Phys. J., 2002, vol. 7, p. 209.

    CAS  Google Scholar 

  8. Bogatyrev, G.P. and Gilev, V.G., Magn. Gidrodin., 1984, no. 3, p. 33.

  9. Varlamov, Yu.D. and Kaplun, A.B., Magn. Gidrodin., 1986, no. 3, p. 43.

  10. Odenbach, S. and Raj, K., Magnetohydrodynamics, 2000, no. 4, p. 36.

  11. Odenbach, S. and Thurn, S., Lect. Notes Phys., 2002, vol. 594, p. 185.

    CAS  Google Scholar 

  12. Zubarev, A.Yu., Odenbach, S., and Fleischer, J., J. Magn. Magn. Mater., 2002, vol. 252, p. 241.

    Article  CAS  Google Scholar 

  13. Bibik, E.E., Efremov, I.F., and Lavrov, I.S., Issledovaniya v oblasti poverkhnostnykh sil (Investigation of Surface Forces), Moscow: Nauka, 1964.

    Google Scholar 

  14. De Gennes, P. and Pincus, P., J. Phys.: Condens. Matter, 1970, vol. 11, no. 3, p. 189.

    Google Scholar 

  15. Sear, R.P., Phys. Rev. Lett., 1996, vol. 76, p. 2310.

    Article  CAS  Google Scholar 

  16. Tavares, J.M., Telo da Gama, M.M., and Osipov, M.A., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1997, vol. 56, p. 6252.

    Google Scholar 

  17. Levin, Y., Phys. Rev. Lett., 1999, vol. 83, p. 1159.

    Article  CAS  Google Scholar 

  18. Tavares, J.M., Weis, J.J., and Telo da Gama, M.M., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 59, p. 4388.

    CAS  Google Scholar 

  19. Tlusty, T. and Safran, S.A., Science (Washington, D.C.), 2000, vol. 290, p. 1328.

    Article  CAS  Google Scholar 

  20. Teixeira, PIC, Tavares, J.M., and Telo da Gama, M.M., J. Phys.: Condens. Matter, 2000, vol. 12, p. 411.

    Article  Google Scholar 

  21. Zubarev, A.Yu. and Iskakova, L.Yu., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 61, p. 5415.

    CAS  Google Scholar 

  22. Levin, Y., Kuhn, P.S., and Barbosa, M.C., Physica A (Amsterdam), 2001, vol. 292, p. 129.

    CAS  Google Scholar 

  23. Zubarev, A.Yu., Zh. Eksp. Teor. Fiz., 2001, vol. 120, p. 94.

    Google Scholar 

  24. Zubarev, A.Yu. and Iskakova, L.Yu., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, vol. 65, p. 061406.

  25. Morozov, K.I. and Shliomis, M.I., Lect. Notes Phys., 2002, vol. 594, p. 162.

    Article  CAS  Google Scholar 

  26. Chantrell, R.W., Bradbury, A., Popplewell, J., and Charles, S.W., J. Appl. Phys., 1982, vol. 53, p. 2742.

    Article  CAS  Google Scholar 

  27. Bradbury, A., Menear, S., and Chantrell, R.W., J. Magn. Magn. Mater., 1986, vols. 54–57, p. 745.

    Article  Google Scholar 

  28. Weis, J.J. and Levesque, D., Phys. Rev. Lett., 1993, vol. 71, p. 2729.

    Article  CAS  Google Scholar 

  29. Van Leeuwen, M.E. and Smit, B., Phys. Rev. Lett., 1993, vol. 71, p. 3991.

    Article  Google Scholar 

  30. Weis, J.J. and Levesque, D., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1993, vol. 48, p. 3728.

    CAS  Google Scholar 

  31. Levesque, D. and Weis, J.J., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1994, vol. 49, p. 5131.

    CAS  Google Scholar 

  32. Stevens, M.J. and Grest, G.S., Phys. Rev. Lett., 1994, vol. 72, p. 3686.

    Article  CAS  Google Scholar 

  33. Jund, P., Kim, S.G., Tomanek, D., and Hetherington, J., Phys. Rev. Lett., 1994, vol. 74, p. 3049.

    Article  Google Scholar 

  34. Stevens, M.J., and Grest, G.S., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1995, vol. 51, p. 5962.

    CAS  Google Scholar 

  35. Wolde, P.R., Oxtoby, D.W., and Frenkel, D., J. Chem. Phys., 1999, vol. 111, p. 4762.

    Article  Google Scholar 

  36. Camp, P.J. and Patey, G.N., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 62, p. 5403.

    CAS  Google Scholar 

  37. Wang, Z., Holm, C., and Muller, H.W., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, vol. 66, p. 021405.

  38. Pshenichnikov, A.F. and Mekhonoshin, V.V., J. Magn. Magn. Mater., 2000, vol. 213, p. 357.

    Article  CAS  Google Scholar 

  39. Pshenichnikov, A.F. and Mekhonoshin, V.V., Eur. Phys. J., E, 2001, vol. 6, p. 399.

    Article  CAS  Google Scholar 

  40. Gazeau, F., Dubois, E., Bacri, J.-C., Boue, F., et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, vol. 65, p. 031403.

  41. Butter, K., Bomans, P.H., Frederik, P.M., Vroge, G.J., and Philips, A.P., J. Phys.: Condens. Matter, 2003, vol. 15, p. 1451.

    Article  Google Scholar 

  42. Pshenichnikov, A.F. and Fedorenko, A.A., Vestn. Perm. Univ., Fiz., 2004, no. 1, p. 86.

  43. Pshenichnikov, A.F. and Fedorenko, A.A., J. Magn. Magn. Mater., 2005, vol. 292C, p. 332.

    Article  CAS  Google Scholar 

  44. Pshenichnikov, A.F., in Neravnovesnye protsessy v magnitnykh suspenziyakh (Nonequilibrium Processes in Magnetic Suspensions), Shliomis, M.I., Ed., Sverdlovsk: UNTs AN SSSR, 1986, p. 9.

    Google Scholar 

  45. Pshenichnikov, A.F., Doctoral (Phys.-Math.) Dissertation, Yekaterinburg: Inst. of Metal Physics, 1992.

    Google Scholar 

  46. Ivanov, A.O. and Kuznetsova, O.B., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2001, vol. 64, p. 041405.

  47. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on Thermal Properties of Gases and Liquids), Moscow: Fizmatgiz, 1972.

    Google Scholar 

  48. Shliomis, M.I., Usp. Fiz. Nauk, 1974, vol. 112, no. 3, p. 72.

    Google Scholar 

  49. Pshenichnikov, A.F. and Shliomis, M.I., Izv. Akad. Nauk SSSR, Ser. Fiz., 1987, vol. 51, p. 1067.

    CAS  Google Scholar 

  50. Pshenichnikov, A.F. and Lebedev, A.V., J. Chem. Phys., 2004, vol. 121, p. 5455.

    Article  CAS  Google Scholar 

  51. Pshenichnikov, A.F. and Lebedev, A.V., Kolloidn. Zh., 2005, vol. 67, p. 218.

    Google Scholar 

  52. Raikher, Yu.L. and Pshenichnikov, A.F., Pis’ma Zh. Eksp. Teor. Fiz., 1985, vol. 41, no. 3, p. 109.

    CAS  Google Scholar 

  53. Morozov, K.I. and Shliomis, M.I., J. Phys.: Condens. Matter, 2004, vol. 16, p. 3807.

    Article  CAS  Google Scholar 

  54. Pshenichnikov, A.F., J. Magn. Magn. Mater., 1995, vol. 145, p. 319.

    Article  CAS  Google Scholar 

  55. Kalikmanov, V.I., Statistical Physics of Fluids, Basic Concepts and Applications, Berlin: Springer, 2001.

    Google Scholar 

  56. Huke, B. and Lucke, M., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 62, p. 6875.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Lakhtina, A.F. Pshenichnikov, 2006, published in Kolloidnyi Zhurnal, 2006, Vol. 68, No. 3, pp. 327–337.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakhtina, E.V., Pshenichnikov, A.F. Dispersion of magnetic susceptibility and the microstructure of magnetic fluid. Colloid J 68, 294–303 (2006). https://doi.org/10.1134/S1061933X06030057

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X06030057

Keywords

Navigation