Skip to main content
Log in

Rheological peculiarities of concentrated suspensions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The rheological properties of concentrated suspensions of metal oxides dispersed in transformer oil, which are used as electrorheological fluids, are systematically studied. Colloidal particles have intermediate sizes between nano- and microsized scales. Low-amplitude dynamic measurements show that the storage moduli of the examined suspensions are independent of frequency and these materials should be considered as solidlike elastic media. The storage modulus is proportional to the five-powdered particle volume concentration. At the same time, a transition through an apparent yield stress with a reduction in the viscosity by approximately six orders of magnitude is distinctly seen upon shear deformation. The character of the rheological behavior depends on the regime of suspension deformation. At very low shear rates, a steady flow is possible; however, upon an increase in the rate, an unsteady regime is realized with development of self-oscillations. When constant shear stresses are preset, in some range of stresses, thickening of the medium takes place, which can also be accompanied by self-oscillations. In order to gain insight into the nature of this effect, measurements are performed for samples with different volume/surface ratios, which show that, in some deformation regimes, suspension is separated into layers and slipping occurs along a low-viscosity layer with a thickness of several dozen microns. Direct observations show a distinct structural inhomogeneity of the flow. The separation and motion of layers with different compositions explain the transition to the flow with the lowest apparent Newtonian viscosity. Thus, the deformation of concentrated suspensions is associated with self-oscillations of stresses and slipping along a low-viscosity interlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abduragimova, L.A., Rehbinder, P.A., and Serb-Serbina, N.N., Kolloidn. Zh., 1955, vol. 17, p. 184.

    CAS  Google Scholar 

  2. Heymann, L., Peukert, S., and Aksel, N., Rheol. Acta, 2002, vol. 41, p. 307.

    Article  CAS  Google Scholar 

  3. Moan, M., Aubry, T., and Bossard, F., J. Rheol. (N. Y.), 2003, vol. 47, p. 1493.

    Article  CAS  Google Scholar 

  4. Potanin, A., J. Rheol. (N. Y.), 2004, vol. 48, p. 1279.

    Article  CAS  Google Scholar 

  5. Dullaert, K. and Mewis, J., J. Rheol. (N. Y.), 2005, vol. 49, p. 1213.

    Article  CAS  Google Scholar 

  6. Stokes, J.R., Telford, J.H., and Williamson, A.-M., J. Rheol. (N. Y.), 2005, vol. 49, p. 139.

    Article  CAS  Google Scholar 

  7. Coussot, P., Chateau, X., Tocquer, L., et al., J. Rheol. (N. Y.), 2006, vol. 50, p. 975.

    Article  CAS  Google Scholar 

  8. Franks, G.V., Zhou, Zh., Duin, N.J., and Boger, D.V., J. Rheol. (N. Y.), 2000, vol. 44, p. 759.

    Article  CAS  Google Scholar 

  9. Egres, R.G. and Wagner, N.J., J. Rheol. (N. Y.), 2005, vol. 49, p. 719.

    Article  CAS  Google Scholar 

  10. Uhlherr, P.H.T., Guo, J., Tiu, C., et al., J. Non-Newtonian Fluid Mech., 2005, vol. 125, p. 101.

    Article  CAS  Google Scholar 

  11. Khan, S.A. and Zoeller, N.J., J. Rheol. (N. Y.), 1993, vol. 37, p. 1225.

    Article  CAS  Google Scholar 

  12. Heymann, L., Peukert, S., and Aksel, N., J. Rheol. (N. Y.), 2002, vol. 46, p. 93.

    Article  CAS  Google Scholar 

  13. O’Brien, V.T. and Mackley, M.E., J. Rheol. (N. Y.), 2002, vol. 46, no. 3, p. 557.

    Article  Google Scholar 

  14. Lee, Y.S. and Wagner, N.J., Rheol. Acta, 2003, vol. 42, p. 199.

    CAS  Google Scholar 

  15. Il’in, S.O., Malkin, A.Ya., Korobko, E.V., et al., J. Eng. Phys. Thermophys., 2011, vol. 84, p. 1016.

    Article  Google Scholar 

  16. Buscall, R., Mills, P.D.A., Goodwin, J.W., and Lawson, D.W., J. Chem. Soc., Faraday Trans., 1988, vol. 84, p. 4249.

    Article  CAS  Google Scholar 

  17. Wyss, H.M., Deliormanli, A.M., Tervoort, E., and Gauckler, L.J., AIChE J., 2005, vol. 51, p. 134.

    Article  CAS  Google Scholar 

  18. Pavlov, V.P. and Vinogradov, G.V., Kolloidn. Zh., 1966, vol. 28, p. 424.

    CAS  Google Scholar 

  19. Shalopalkina, T.G. and Trapeznikov, A.A., Kolloidn. Zh., 1960, vol. 22, p. 735.

    CAS  Google Scholar 

  20. Mustafaev, E., Malkin, A.Ya., Plotnikova, E.P., and Vinogradov, G.V., Vysokomol. Soedin., 1964, vol. 6, p. 1515.

    CAS  Google Scholar 

  21. Boltenhagen, P., Hu, Y., Matthys, E.F., and Pine, D.J., Europhys. Lett., 1997, vol. 38, p. 389.

    Article  CAS  Google Scholar 

  22. Wunenburger, A.S., Colin, A., Leng, J., et al., Phys. Rev. Lett., 2001, vol. 86, p. 1374.

    Article  CAS  Google Scholar 

  23. Lootens, D., Damme, H.V., and Hebraud, P., Phys. Rev. Lett., 2003, vol. 90, p. 178301.

    Article  Google Scholar 

  24. Bagusat, F., Bohme, B., Schiller, P., and Mogel, H.-J., Rheol. Acta, 2005, vol. 44, p. 313.

    Article  CAS  Google Scholar 

  25. Malkin, A.Ya., Semakov, A.V., and Kulichikhin, V.G., Adv. Colloid Interface Sci., 2010, vol. 157, p. 75.

    Article  CAS  Google Scholar 

  26. Bashkirtseva, I.A., Zubarev, A.Yu., Iskakova, L.Yu., and Ryashko, L.B., Kolloidn. Zh., 2010, vol. 72, p. 147.

    Google Scholar 

  27. Subbotin, A.V., Malkin, A.Ya., and Kulichikhin, V.G., Adv. Colloid Interface Sci., 2011, vol. 162, p. 29.

    Article  CAS  Google Scholar 

  28. Berret, J.-F., Roux, D.C., and Porte, G., J. Phys. II, 1994, vol. 4, p. 1261.

    Article  CAS  Google Scholar 

  29. Lerouge, S. and Berret, J.-F., Adv. Polym. Sci., 2010, vol. 230, p. 1.

    Article  CAS  Google Scholar 

  30. Hu, Y.T., Palla, C., and Lips, A., J. Rheol. (N. Y.), 2008, vol. 52, p. 379.

    Article  CAS  Google Scholar 

  31. Zhou, L., Vasquez, P.A., Cook, L.P., and McKinley, G.H., J. Rheol. (N. Y.), 2008, vol. 52, p. 591.

    Article  CAS  Google Scholar 

  32. Tapadia, P., Ravindranath, S., and Wang, S.-Q., Phys. Rev. Lett., 2006, vol. 96, p. 196001.

    Article  Google Scholar 

  33. Ilyin, S., Roumyantseva, T., Spiridonova, V., et al., Soft Matter, 2011, vol. 7, p. 9090.

    Article  CAS  Google Scholar 

  34. Ur’ev, N.B., Colloids Surf. A., 1994, vol. 8, p. 1.

    Article  Google Scholar 

  35. Ur’ev, N.B., Uspekhy Khimii, 2004, vol. 73, p. 39.

    Google Scholar 

  36. Malkin, A.Ya. and Chalykh, A.E., Diffuziya i vyazkost’. Metody izmerenii (Diffusion and Viscosity. Measurement Methods), Moscow: Khimiya, 1979.

    Google Scholar 

  37. Chen, L.B., Zukoski, C.F., Ackerson, B.J., et al., Phys. Rev. Lett., 1992, vol. 69, p. 688.

    Article  CAS  Google Scholar 

  38. Vermant, J. and Solomon, M.J., J. Phys.: Condens. Matter, 2005, vol. 17, p. 187.

    Article  Google Scholar 

  39. Miesowicz, M., Nature (London), 1935, vol. 136, p. 261.

    CAS  Google Scholar 

  40. Miesowicz, M., Nature (London), 1946, vol. 158, p. 27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.O. Ilyin, A.Ya. Malkin, V.G. Kulichikhin, 2012, published in Kolloidnyi Zhurnal, 2012, Vol. 74, No. 4, pp. 492–502.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyin, S.O., Malkin, A.Y. & Kulichikhin, V.G. Rheological peculiarities of concentrated suspensions. Colloid J 74, 472–482 (2012). https://doi.org/10.1134/S1061933X12040072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X12040072

Keywords

Navigation