Skip to main content
Log in

Determination of nanoparticle sizes by X-ray diffraction

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Different procedures for analysis of particle sizes by the X-ray diffraction method are compared by the example of nanoparticles of nickel and iron(3+) oxide (Fe2O3). A modified Warren-Averbach method is proposed for the analysis of the X-ray diffraction line profile based on the approximation by the Voigt function, which yields stable solutions, and the efficiency of the method is shown. The analysis within the frame-work of the Warren-Averbach method makes it possible to restore the distribution function of nanoparticles (crystallites) over true diameters, which satisfactorily correlates with electron microscopy data. The applicability of the Warren-Averbach method to the estimation of crystallite sizes by the analysis of a single diffraction line is substantiated. The range of the applicability of the Scherrer, Williamson-Hall, Warren-Averbach, and modified Warren-Averbach methods to the substructure analysis by the X-ray diffraction is determined as depending on the method of nanostructure formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Merkus, H.G., Particle Size Measurements: Fundamentals, Practice, Quality, Berlin: Springer, 2009.

    Google Scholar 

  2. Scherrer, P., Math.-Phys. Klasse, 1918, vol. 2, p. 98.

    Google Scholar 

  3. Williamson, G.K. and Hall, W.H., Acta Metall., 1953, vol. 1, p. 22.

    Article  CAS  Google Scholar 

  4. Warren, B.E. and Averbach, B.L., J. Appl. Phys., 1952, vol. 23, p. 497.

    Article  CAS  Google Scholar 

  5. Warren, B.E., X-Ray Diffraction, Massachusetts: Addison-Wesley, 1969.

    Google Scholar 

  6. Shelekhov, E.V. and Sviridova, T.A., Metalloved. Term. Obrab. Met., 2000, no. 8, p. 16.

  7. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, Nanotechnologies), Moscow: Fizmatlit, 2009.

    Google Scholar 

  8. Suzdalev, I.P., Nanotekhnologiya. Fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology. Physical Chemistry of Nanoclusters, Nanostructures and Nanomaterials), Moscow: KomKniga, 2006.

    Google Scholar 

  9. Langford, J.-I., Louer, D., and Scardi, P., J. Appl. Crystallogr., 2000, vol. 33, p. 964.

    Article  CAS  Google Scholar 

  10. Guinier, A., Theorie and technique de la radiocristallographie, Paris: Dunod, 1956.

    Google Scholar 

  11. Krill, C.E. and Birringer, R., Philos. Mag. A, 1998, vol. 77, p. 621.

    Article  CAS  Google Scholar 

  12. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Ill-Correct Problem Solution), Moscow: Nauka, 1986.

    Google Scholar 

  13. Langford, J.I., J. Appl. Crystallogr., 1978, vol. 11, p. 10.

    Article  CAS  Google Scholar 

  14. Stokes, A.R., Proc. Phys. Soc., 1948, vol. 61, p. 382.

    Article  CAS  Google Scholar 

  15. Drayson, S.R., J. Quant. Spectrosc. Radiat. Transfer, 1976, vol. 16, p. 611.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Dorofeev, A.N. Streletskii, I.V. Povstugar, A.V. Protasov, E.P. Elsukov, 2012, published in Kolloidnyi Zhurnal, 2012, Vol. 74, No. 6, pp. 710–720.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorofeev, G.A., Streletskii, A.N., Povstugar, I.V. et al. Determination of nanoparticle sizes by X-ray diffraction. Colloid J 74, 675–685 (2012). https://doi.org/10.1134/S1061933X12060051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X12060051

Keywords

Navigation