Skip to main content
Log in

Structure and electrophysical properties of self-organized composite layers based on peptide and silver nanoparticles

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Atomic force microscopy, scanning tunnel microscopy, and IR spectroscopy are employed to study composite films formed from dispersions of silver nanoparticles in an aqueous solution of Asp-Glu-Val-Asp-Trp-Phe-Asp peptide on different substrates at room temperature. It is established that pure peptide crystallizes on substrates to yield different structures, the character of which essentially depends on the chemical nature of a substrate, method of its pretreatment, and solution pH. When films are formed from dispersions containing both silver nanoparticles and peptide, globular structures are formed, in which individual nanoparticles are included into a peptide matrix. It is established that, during the reduction of silver ions and stabilization of resulting nanoparticles, peptide bonds are partly ruptured and another isomeric form (cisconfiguration) of peptide molecules is realized in the silver nanoparticle dispersion in its solution. Distributions of the surface potential and local tunnel voltage-current characteristics are measured for the composite layers. The voltage-current characteristics of all examined composite layers are essentially nonlinear. It is established that the charge transfer in the composite and pure peptide layers is carried out via the Poole-Frenkel mechanism and the Schottky overbarrier emission, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lerner, E.J., Ind. Phys., 2004, vol. 10, p. 16.

    Google Scholar 

  2. Brorsson, A.C., Kumita, J.R., MacLeod, I., Bolognesi, B., Speretta, E., Luheshi, L.M., Knowles, T.P.J., Dobson, C.M., and Crowther, D.C., Front. Biosci., 2010, vol. 15, p. 373.

    CAS  Google Scholar 

  3. Knowles, T.P.J. and Buehler, M.J., Nature Nanotechnol., 2011, vol. 6, p. 469.

    Article  CAS  Google Scholar 

  4. Gazit, E., An Introduction to Bionanotechnology, London: Imperial College Press, 2007.

    Google Scholar 

  5. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D., Molecular Biology of the Cell, New York: Garland, 1994.

    Google Scholar 

  6. Vysotskii, V.V., Roldughin, V.I., Uryupina, O.Ya., and Zaitseva, A.V., Kolloidn. Zh., 2011, vol. 73, p. 173.

    Google Scholar 

  7. Loskutov, A.I., Nanotekhnika, 2010, no. 3, p. 66.

    Google Scholar 

  8. Vysotskii, V.V., Uryupina, O.Ya., Matveev, V.V., Gusel’nikova, A.V., and Roldughin, V.I., Kolloidn. Zh., 2011, vol. 73, p. 450.

    Google Scholar 

  9. Grigor’ev, S.N., Loskutov, A.I., Oshurko, V.B., Uryupina, O.Ya., and Shamurina, M.V., Nanotekhnika, 2011, no. 2, p. 38.

    Google Scholar 

  10. Elliott, W.H. and Elliott, D.C., Biochemistry and Molecular Biology, Moscow: MAIK Nauka/Interperiodika, 2002.

    Google Scholar 

  11. Chirgadze, Yu.N., Infrakrasnye spektry i struktura polipeptidov i belkov (Infrared Spectra and Structure of Polypeptides and Proteins), Moscow: Nauka, 1965.

    Google Scholar 

  12. Koegel, R.I., McCallum, R.A., Greenstein, J.P., Winitz, M., and Birnbaum, S.M., Ann. N. Y. Acad. Sci., 1967, vol. 69, p. 94.

    Article  Google Scholar 

  13. Venyaminov, S.Yu. and Kalnin, N.N., Biopolymers, 1990, vol. 30, p. 1243.

    Article  CAS  Google Scholar 

  14. Venyaminov, S.Yu. and Kalnin, N.N., Biopolymers, 1990, vol. 30, p. 1259.

    Article  CAS  Google Scholar 

  15. Levitan, K., Chereau, D., Cohen, S.I.A., Knowles, T.P.J., Dobson, C.M., Fink, A.L., Anderson, J.P., Goldstein, J.M., and Millhauser, G.L., J. Mol. Biol., 2011, vol. 411, p. 329.

    Article  CAS  Google Scholar 

  16. Walker, D.A., Kowalczyk, B., De la Cruz, M.O., and Grzybowski, B.A., Nanoscale, 2011, vol. 3, p. 1316.

    Article  CAS  Google Scholar 

  17. Sommer, J.-U. and Reiter, G., Lect. Notes Phys., 2003, vol. 606, p. 153.

    Article  CAS  Google Scholar 

  18. Alfimov, M.V., Kadushnikov, R.M., Shturkin, N.A., Alievskii, V.M., and Lebedev-Stepanov, P.V., Ross. Nanotekhnol., 2006, vol. 1, p. 1.

    Google Scholar 

  19. Roldughin, V.I., Usp. Khim., 2003, vol. 72, p. 931.

    Google Scholar 

  20. Roldughin, V.I., Usp. Khim., 2003, vol. 72, p. 1027.

    Google Scholar 

  21. Lachinov, A.N. and Vorob’eva, N.V., Usp. Fiz. Nauk, 2006, vol. 176, p. 1249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Loskutov, O.Ya. Uryupina, S.N. Grigor’ev, V.B. Oshurko, V.I. Roldughin, 2013, published in Kolloidnyi Zhurnal, 2013, Vol. 75, No. 3, pp. 332–342.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loskutov, A.I., Uryupina, O.Y., Grigor’ev, S.N. et al. Structure and electrophysical properties of self-organized composite layers based on peptide and silver nanoparticles. Colloid J 75, 301–310 (2013). https://doi.org/10.1134/S1061933X13030113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X13030113

Keywords

Navigation