Skip to main content
Log in

Intercalation of salicylic acid into ZnAl and MgAl layered double hydroxides for a controlled release formulation

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Salicylic acid was intercalated into an inorganic host consisting of ZnAl/MgAl-layered double hydroxides lamella by reconstruction method. Powder X-ray diffractograms showed that the basal spacing of the layered double hydroxide bearing salicylate as the intergallery anion expanded from 7.6 and 7.8 Å in the precursors to 14.49 Å and 14.85 in ZnAl and MgAl layered double hydroxide, respectively. These values suggest that the organic molecules form bilayers in the interlayer space. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayer’s of the layered double hydroxides. The thermal stability of the intercalated salicylic acid is significantly enhanced compared with the pure form before intercalation. Using the XRD results combined with a molecular simulation model, a possible representation of the salicylate anion positioning between the lamellar layers has been proposed. The in vitro drug release from intercalated material was remarkably lower than that from the corresponding physical mixture at pH 7.5. The kinetic analysis showed the importance of the diffusion through the particle in controlling the drug release rate. The obtained results show that hydrotalcite may be used to prepare modified release formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jantzen, G.M. and Robinson, J.R., in Modern Pharmaceutics, Banker, G.S. and Rhodes, C.T., Eds., New York: Marcel Dekker, 1996, p. 575.

  2. Vergnaud, J.M., Controlled Drug Release of Oral Dosage Forms, New York Ellis Horwood, 1993.

    Google Scholar 

  3. Kim, C.-J., Controlled Release Dosage Form Design, Boca Raton CRC, 1999.

    Google Scholar 

  4. Xu, Z.P., Zeng, Q.H., Lu, G.Q., and Yu, A.B., Chem. Eng. Sci., 2006, vol. 61, p. 1027.

    Article  CAS  Google Scholar 

  5. Gu, F.X., Karnik, R., Wang, A.Z., Alexis, F., Levy-Nissenbaum, E., Hong, S., Langer, R.S., and Farokhzad, O.C., Nano Today, 2007, vol. 2, no. 3, p. 14.

    Article  Google Scholar 

  6. Slowing, I.I., Vivero-Escoto, J.L., Wu, C.-W., and Lin, V.S.-Y., Adv. Drug Delivery Rev., 2008, vol. 60, p. 1278.

    Article  CAS  Google Scholar 

  7. Xie, J., Chen, K., Lee, H.-Y., Xu, C., Hsu, A.R., Peng, S., Chen, X., and Sun, S., J. Am. Chem. Soc., 2008, vol. 130, p. 7542.

    Article  CAS  Google Scholar 

  8. Lai, C.-Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., Jeftinija, S., and Lin, V.S.-Y., J. Am. Chem. Soc, 2002, vol. 125, p. 4451.

    Article  Google Scholar 

  9. Cheng, X. and Kuhn, L., Int. J. Nanomed., 2007, vol. 2, p. 667.

    CAS  Google Scholar 

  10. Shenoy, D., Fu, W., Li, J., Crasto, C., Jones, G., DiMarzio, C., Sridhar, S., and Amiji, Int. J. Nanomed., 2006, vol. 1, p. 451.

    Article  Google Scholar 

  11. Madani, S.Y., Naderi, N., Dissanayake, O., Tan, A., and Seifalian, A.M., Int. J. Nanomed., 2011, vol. 6, p. 2963.

    CAS  Google Scholar 

  12. Shao, N., Su, Y., Hu, J., Zhang, J., Zhang, H., and Cheng, Y., Int. J. Nanomed., 2011, vol. 6, p. 3361.

    CAS  Google Scholar 

  13. Hussein, A.A.S., Al-Qubaisi, M., Hussein, M.Z., Ismail, M., Zainal, Z., and Hakim, M.N., Int. J. Nanomed., 2012, vol. 7, p. 2129.

    Article  Google Scholar 

  14. Oh, J.-M., Park, C.B., and Choy, J.-H., J. Nanosci. Nanotechnol., 2011, vol. 11, p. 1632.

    Article  CAS  Google Scholar 

  15. Choy, J.-H., Park, M., and Oh, J.-M., Curr. Nanosci., 2006, vol. 2, p. 275.

    Article  CAS  Google Scholar 

  16. Ozkan, M., Drug Discov. Today, 2004, vol. 9, p. 1065.

    Article  CAS  Google Scholar 

  17. Choy, J.-H., Choi, S.-J., Oh, J.-M., and Park, T., Appl. Clay Sci., 2007, vol. 36, p. 122.

    Article  CAS  Google Scholar 

  18. Masarudin, M.J., Yusoff, K., Rahim, R.A., and Hussein, M.Z., Nanotechnology, 2009, vol. 20, p. 045602.

    Article  Google Scholar 

  19. Reichle, W.T., Solid State Ionics, 1986, vol. 22, p. 135.

    Article  CAS  Google Scholar 

  20. Reichle, W.T., Kang, S.Y., and Everhardt, D.S., J. Catal., 1986, vol. 101, p. 352.

    Article  CAS  Google Scholar 

  21. Chatelet, I., Bottero, J.Y., Yvon, J., and Bouchelaghem, A., Colloids Surf. A, 1996, vol. 111, p. 167.

    Article  CAS  Google Scholar 

  22. Mackowiak, P.A., Clin. Infect. Dis., 2000, vol. 31, p. 154.

    Article  Google Scholar 

  23. Reichle, W.T., J. Catal., 1985, vol. 94, p. 547.

    Article  CAS  Google Scholar 

  24. Crepaldi, E.L., Trondo, J., Cardoso, L.P., and Valim, J.B., Colloids Surf. A, 2002, vol. 211, p. 103.

    Article  CAS  Google Scholar 

  25. Xu, Z.P. and Zeng, H.C., J. Phys. Chem. B, 2001, vol. 105, p. 1743.

    Article  CAS  Google Scholar 

  26. Aisawa, S., Takahashi, S., Ogasawara, W., Umetsu, Y., and Narita, E., J. Solid State Chem., 2001, vol. 162, p. 52.

    Article  CAS  Google Scholar 

  27. Bellamy, L.J., The Infrared Spectra of Complex Molecules, London Chapman and Hall, 1975.

    Book  Google Scholar 

  28. Li, F., Zhang, L.H., Evans, D.G., Forano, C., and Duan, X., Thermochim. Acta, 2004, vol. 424, p. 15.

    Article  CAS  Google Scholar 

  29. Álvarez-Ayuso, E. and Nugteren, H.W., Water Res., 2005, vol. 39, p. 2535.

    Article  Google Scholar 

  30. Kloprogge, T.J., Wharton, D., Hickey, L., and Frost, E.L., Am. Mineral., 2002, vol. 87, p. 623.

    Article  CAS  Google Scholar 

  31. Hermosin, M.C., Pavlovic, I., Ulbibarri, M.A., and Cornejo, J., Water Res., 1996, vol. 30, p. 171.

    Article  CAS  Google Scholar 

  32. Ambrogi, V., Fardella, G., Grandolini, G., and Perioli, L., Int. J. Pharm., 2001, vol. 220, p. 23.

    Article  CAS  Google Scholar 

  33. Costantino, U., Casciola, M., Massinelli, L., Nocchetti, M., and Vivani, R., Solid State Ionics, 1997, vol. 97, p. 203.

    Article  CAS  Google Scholar 

  34. Ritger, P.L. and Peppas, N.A., J. Control. Release, 1987, vol. 5, p. 37.

    Article  CAS  Google Scholar 

  35. Bhaskar, R., Murthy, S.R.S., Miglani, B.D., and Viswanathan, K., Int. J. Pharm., 1986, vol. 28, p. 59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Haraketi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haraketi, M., Hosni, K. & Srasra, E. Intercalation of salicylic acid into ZnAl and MgAl layered double hydroxides for a controlled release formulation. Colloid J 78, 533–541 (2016). https://doi.org/10.1134/S1061933X16040062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16040062

Navigation