Skip to main content
Log in

An Enantioselective Voltammetric Sensor System Based on Glassy Carbon Electrodes Modified by Polyarylenephthalide Composites with α-, β-, and γ-Cyclodextrins for Recognizing D- and L-Tryptophans

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We developed an enantioselective voltammetric sensor system based on glassy carbon electrodes modified by polyarylenephthalide composites with α-, β-, and γ-cyclodextrins for the selective recognition and determination of tryptophan (Trp) enantiomers. The electrochemical characteristics of the electrodes and surface morphology were studied by cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. The proposed sensor system with recording voltammograms by three electrodes and the chemometric processing of the data using principal component analysis and projections to latent structures discriminant analysis was used to recognize tryptophan enantiomers in food additives and to determine their manufacturer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Eliel, E.L., Wilen, S.H., and Doyle, M.P., Basic Organic Stereochemistry, New York: Wiley, 2001.

    Google Scholar 

  2. Gopal, R., Seo, C.H., Song, P.I., and Park, Y., Amino Acids, 2013, vol. 44, p. 645.

    Article  CAS  Google Scholar 

  3. Iizuka, H., Ishii, K., Hirasa, Y., Kubo, K., and Fukushima, T., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2011, vol. 879, p. 3208.

    Article  CAS  Google Scholar 

  4. Wei, Y.L., Wang, S.F., Shuang, S.M., and Dong, C.A., Talanta, 2010, vol. 81, p. 1800.

    Article  CAS  Google Scholar 

  5. Zhen, Q.N., Xu, B.A., Ma, L., Tian, G., Tang, X.F., and Ding, M., Clin. Biochem., 2011, vol. 44, p. 226.

    Article  CAS  Google Scholar 

  6. Zhang, T., Holder, E., Franco, P., and Lindner, W., J. Chromatogr. A, 2014, vol. 1363, p. 191.

    Article  CAS  Google Scholar 

  7. Taujenis, L., Olsauskaite, V., and Padarauskas, A., J. Agric. Food Chem., 2014, vol. 62, p. 11 099.

    Article  Google Scholar 

  8. Li, M., Liu, X., Jiang, F.Y., Guo, L.P., and Yang, L., J. Chromatogr. A, 2011, vol. 1218, p. 3725.

    Article  CAS  Google Scholar 

  9. Labuta, J., Ishihara, S., Sikorsky, T., Futera, Z., Shundo, A., Hanykova, L., Burda, J.V., Ariga, K., and Hill, J.P., Nat. Commun., 2013, no. 4, p. 2188.

  10. Maistrenko, V.N., Sidel’nikov, A.V., and Zil’berg, R.A., J. Anal. Chem., 2018, vol. 73, no. 1, p. 1.

    Article  CAS  Google Scholar 

  11. Chen, Q., Zhou, J., Han, Q., Wang, Y.H., and Fu, Y.Z., Coloids Surf., B, 2012, vol. 92, p. 130.

  12. Bao, L., Tao, Y., Gu, X., Yang, B., Deng, L., and Kong, Y., Electrochem. Commun., 2016, vol. 64, p. 21.

    Article  CAS  Google Scholar 

  13. Gou, H., He, J., Mo, Z., Wei, X., Hu, R., Wang, Y., and Guo, R., J. Electrochem. Soc., 2016, vol. 163, p. B272.

    Article  CAS  Google Scholar 

  14. Li, Z., Mo, Z., Guo, R., Meng, S., Wang, R., Gao, H., and Niu, X., Anal. Methods, 2017, vol. 9, p. 5149.

    Article  CAS  Google Scholar 

  15. Feng, W.L., Liu, C., Lu, S.Y., Zhang, C.Y., Zhu, X.H., Liang, Y., and Nan, J.M., Microchim. Acta, 2014, vol. 181, p. 501.

    Article  CAS  Google Scholar 

  16. Xu, J., Wang, Q., Xuan, C., Xia, Q., Lin, X., and Fu, Y., Electroanalysis, 2016, vol. 28, p. 868.

    Article  CAS  Google Scholar 

  17. Zor, E., Morales-Narváez, E., Alpaydin, S., Bingol, H., Ersoz, M., and Merkoçi, A., Biosens. Bioelectron., 2017, vol. 87, p. 410.

    Article  CAS  Google Scholar 

  18. Xiao, Q., Lu, S., Huang, C., Su, W., Zhou, S., Sheng, J., and Huang, S., J. Iran. Chem. Soc., 2017, vol. 14, p. 1957.

    Article  CAS  Google Scholar 

  19. Xiao, Q., Lu, S., Huang, C., Su, W., and Huang, S., Sensors, 2016, vol. 16, p. 1874.

    Article  Google Scholar 

  20. Steed, J.W. and Atwood, J.L., Supramolecular Chemistry, New York: Wiley, 2004.

    Google Scholar 

  21. Aachmann, F.L., Larsen, K.L., and Wimmer, R., J. Inclusion Phenom. Macrocyclic Chem., 2012, vol. 73, p. 349.

    Article  CAS  Google Scholar 

  22. Roy, M.N., Ekka, D., Saha, S., and Roy, M.C., RSC Adv., 2014, vol. 4, p. 42 383.

    Article  Google Scholar 

  23. Caso, J.V., Russo, L., Palmieri, M., Malgieri, G., Galdiero, S., Falanga, A., Isernia, C., and Iacovi-no, R., Amino Acids, 2015, vol. 47, p. 2215.

    Article  CAS  Google Scholar 

  24. Lipkowitz, K.N., Raghothama, S., and Yang, J., J. Am. Chem. Soc., 1992, vol. 114, p. 1554.

    Article  CAS  Google Scholar 

  25. Baldwin, E.A., Bai, J., Plotto, A., and Dea, S., Sensors, 2011, vol. 11, p. 4744.

    Article  Google Scholar 

  26. Zilberg, R.A., Sidelnikov, A.V., Maistrenko, V.N., Yarkaeva, Y.A., Khamitov, E.M., Kornilov, V.M., and Maksutova, E.I., Electroanalysis, 2018, vol. 30, p. 619.

    Article  CAS  Google Scholar 

  27. Woertz, K., Tissen, C., Kleinebudde, P., and Breitkreutz, J., Int. J. Pharm., 2011, vol. 417, p. 256.

    Article  CAS  Google Scholar 

  28. Rudnitskaya, A., Kirsanov, D., Blinova, Y., Legin, E., Seleznev, B., Clapham, D., Ives, R.S., Saunders, K.A., and Legin, A., Anal. Chim. Acta, 2013, vol. 770, p. 45.

    Article  CAS  Google Scholar 

  29. Choi, D.H., Kim, N.A., Nam, T.S., Lee, S., and Jeong, S.H., Drug Dev. Ind. Pharm., 2014, vol. 40, p. 308.

    Article  CAS  Google Scholar 

  30. Sidel’nikov, A.V., Maistrenko, V.N., Zil’berg, R.A., Yarkaeva, Yu.A., and Khamitov, E.M., J. Anal. Chem., 2017, vol. 72, no. 5, p. 575.

    Article  Google Scholar 

  31. Salazkin, S.N., Shaposhnikova, V.V., Machulenko, L.N., Gileva, N.G., Kraikin, V.A., and Lachinov, A.N., Polym. Sci. A, 2008, vol. 50, p. 243.

    Article  Google Scholar 

  32. Zilberg, R., Maistrenko, V., Kabirova, L., and Dubrovsky, D., Anal. Methods, 2018, vol. 10, p. 1886.

    Article  CAS  Google Scholar 

  33. Esbensen, K.H., Multivariate Analysis—in Practice, Oslo: CAMO Process AS, 2001.

    Google Scholar 

  34. Pomerantsev, A.L., Chemometrics in Excel, New York: Wiley, 2014.

    Book  Google Scholar 

  35. Nigmatullin, R.R., Budnikov, H.C., and Sidelnikov, A.V., Electroanalysis, 2015, vol. 27, p. 1416.

    Article  CAS  Google Scholar 

  36. Zilberg, R.A., Yarkaeva, Yu.A., Maksyutova, E.I., Sidel’nikov, A.V., and Maistrenko, V.N., J. Anal. Chem., 2017, vol. 72, no. 4, p. 402.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-13-10257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Zil’berg.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zil’berg, R.A., Maistrenko, V.N., Yarkaeva, Y.A. et al. An Enantioselective Voltammetric Sensor System Based on Glassy Carbon Electrodes Modified by Polyarylenephthalide Composites with α-, β-, and γ-Cyclodextrins for Recognizing D- and L-Tryptophans. J Anal Chem 74, 1245–1255 (2019). https://doi.org/10.1134/S1061934819110133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934819110133

Keywords:

Navigation